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EVALUATION

The significance of this contractual effort is the realization
of generating a large number of adaptive weights simultaneously over
more than one domain for radar systems. Such efforts will eventually
render fully adaptive radar systems feasible. The effort supports
RADC Technology Plan, TPO R4B, by providing a technical basis for
adaptive radar operation in a hostile and interfering electromagnetic
environment. The results derived herein will serve as a basis for

using universally designed adaptive modules to solve the large array
multidomain problems.
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1. INTRODUCTION

1.1 STATEMENT OF THE PROBLEM

The objective of this study, conducted under Contract No. F30602-78-C-
0271, is to determine a modular architecture for a multiprocessor system to
compute adaptive weights to maximize the signal-to-noise ratio (SNR) of a
multichannel input radar system with a large number of weights. The radar
system to be considered has channel inputs in all three signal domains--
spatial, temporal, and polarization--with multiple inputs in each domain.
The adaptive system must sense the environment and adjust at least 200 complex
weights imposed on the array elements, on the delay taps off each element,
and on the polarization sensors, thus maximizing the signal-to-noise ratio.
This sensing must be accomplished on a time-varying basis, as the environment
dictates, with minimum convergence time, minimum noise, and maximum stability.

For a multiprocessor to be able to calculate at least 200 complex
weights quickly enough to adapt to the changing environment, not only must a
fast adaptive algorithm and a fast processor system be chosen, but the
algorithm chosen must itself be well suited to the processor system. The

algorithms to be explored are based on the Gram-Schmidt orthogonaliza ion

process. A modular architecture to support these alnorithms is designed.

‘ 1.2 RESTATEMENT OF THE PROBLEM IN MATHEMATICAL TERMS
Each antenna element in an adaptive array produces an input signal,

which may be written

I* Xj(t) = Nj(t) + Sj(t), j=1,...,n (1




where X is the complex waveform as a function of time t, N is the noise
component, S is the signal component, the subscript j designates the parti-
cular antenna element, and n is the total number of antenna elements. X, N,

and S may be thought of as complex column vectors of their components:

X,(t) |
Xp(t)
X(t) =| . . (2)

X ()

b

Instead of these continuous waveforms, we will usually deal with the sample

vectors x(i), N(i), and S(i), defined by:

X oxey) (3)

where the t; are closely spaced points in time. Let W be a column vector of

complex numbers. We form the filter function

F = W*X (4)

as the dot product of W and the input vector X (where W* = W conjugate
transpose).

Our problem is to choose the weights W to optimize the SNR of the
system, and thereby maximize the probability of detection of the signal in
the presence of jammers and clutter. These weights are a function of
the sequence of sample input vectors X(i). This report explores not only
different algorithms for calculating the weights W through orthogonalizing
the inputs x(i) and filter function F, but also the effects of different




modular parallel computer architectures on the implementations of these
algorithms. These effects include execution speed, accuracy, convergence

rates, and fault tolerance.

1.3 APPROACH
Let N be the column vector of noise inputs as, as in Section 1.2.
. Assuming the n components Ni have a multivariate Gaussian distribution, we

can write their covariance matrix as
M = E(NN*) . (5)

It has been shown [Brennan and Reed 1973]* that the optimal weights W are

given by

-1

W= kM 'S s (6)

where S is the expected signal vector (called steering vector) and k is any
nonzero constant (normally 1).

M is not known, but must be estimated from sample data

M=l \Zj] x(3) @ (7)
. J=

wn

L. E. Brennan and I. S. Reed, "Theory of Adaptive Radar," IEEE Trans.
on_Aerospace and Electronic Systems, Vol. AES-9, No. 2, 1973, pp. 237-252.
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where X(J) are sample voltage vectors and S is the number of samples. M is

an n x n dense positive definite Hermitian matrix [Liles and Demmel 1978],*
and so forming M as in Eq. (7) and then computing W from Eq. (6) with M in
place of M takes a great deal of computation.

Now let T be a given Tlinear transformation. Then the covariance

matrix MT of the random vector TN is given by
Mp + ELTN(TN)*] = TE(NN*)T* = TMT* . (8)

Thus, we have

W=wnls = ™l (9)

If T can be chosen so that TS is easily computable, and MT is diagonal,
we will have simplified our problem. Such a T is given by the Gram-Schmidt
orthogonalization process and produces a lower triangular matrix T such that
the entries of the random vector TX are orthogonal.

The basic implementation of the processor for computing T and TX is
shown in Figure 1. Each processor is very simple, and all are identical.

The array operates with each row working in parallel on an intermediate step
of TX, and with different rows working as stages in a pipeline to compute TX
for different X's. The array overlaps its updates of its own internal

coefficients Ws with computing TX for different values of X.

J

—
W. C. Liles and J. Demmel, "Solving Large Positive Definite )

Hermitian Linear Systems Utilizing Parallel/Pipeline Processors," Proceedings

of the 1978 International Conference on Parallel Processing, IEEE, 1978,

pp. 261-262.
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Figure 1. Basic Gram-Schmidt array for n = 4,
Arrows indicate direction of data flow.
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Our approach is to analyze this basic scheme and its variations with
respect to the following factors:

1. Variations on the basic mathematical algorithm, Section 2.
We consider their different hardware implementations (e.q.,
cost and reliability properties) and stability (e.g., the
number of bits required for intermediate steps).

2. Different ways of computing the internal coefficients, W s
Section 3.1. The different algorithms are analyzed with Js
respect to their hardware implementations, number of samples
required for convergence, and sensitivity to the number of
jammers. Simulations were performed.

3. Error sensitivity and fault tolerance, Section 3.2. Both
theoretical and simulation results are presented on the
effects of catastrophic and gradual failures of processors
and receiver/antenna systems.

o mww-——v-v—c‘wv“q"w—wrrw—v—
.

4. Different ways to perform arithmetic, Section 3.3. We
consider both fixed- and floating-point implementations, and
try to derive probabilistic bounds on the growth of inter-
mediate results during the computations.

5. Implementation with fewer processors, Section 3.4. We
consider speed, cost, and re\iab§1ity tradeoffs when using
only n processors instead of 0(n") implementations of
Figure 1.

6. Individual processor constructions, Section 3.5. The :
different ways of implementing each processor P,. are |
considered with respect to speed and hardware caﬁplexity.

7. Radar engineering considerations, Section 3.6. We indicate
how different system parameters might affect an engineer's
decision of what version of the Gram-Schmidt algorithm to
implement.

' Finally, we select a typical set of radar system parameters and give a
detailed hardware design for a Gram-Schmidt processor incorporating those

parameters (see Section 3.7).




2. DESCRIPTION OF THE ALGORITHM

2.1 INTRODUCTION

An n-element radar system has inputs Xi» 1 21 < n, where each component

X; is the sum of noise N; and signal S;» expressed in column vector notation as

X=N+S . {10)
The output of the system is the filter function, F, given by

F = WX R (1)

where W is a column vector of complex weights and * denotes conjugate transpose.
Brennan and Reed [1973] have established that in order to maximize the

signal-to-noise ratio (SNR) of the system, W should satisfy

MW =S . (12)
where M is the covariance matrix of the noise

Mij = E(N}Nj) . (13) {

In a real system, Mis not known and must be estimated from incoming samples X.
This section describes an alaorithm based on Gram-Schmidt (G-S) orthogonalization

to form M, solve the system of simultaneous linear eauations determining W,

(Eq. (12)), and compute F.
. The literature contains both practical and highly theoretical results

on solving systems of equations. Csanky's algorithm [1976]* requires the

L. Csanky, "Fast Parallel Matrix Inversion Algorithms," SIAM J. on
3 1 Computing, Vol. 5, 1976, pp. 618-623. —
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least number of operations of any algorithm [p(1ogzn)] but is impractical

because it requires too many processors connected in a complicated way, and

is also numerically unstable. GentleT?n [1978]* has given bounds on the time
spent routing data between processors during Gaussian Elimination. Several
investigators have benchmarked various algorithms cn different machines
[Calahan et al. 1976; Liles and Demmel 1978; Blakely 1977; Berra and Singhania
1976; Sameh and Kuck 1975)."" Sameh and Kuck [1975, 1977a, 1977b, 1978]""
have published survey articles. Kung and Leiserson [1978]+ have produced
algorithms emphasizing simple processors and simple interconnect structures.
The matrix M in our problem has two very nice properties which make

solving Eq.(12) easier than in the case of a general matrix: It is Hermitian (i.e.,

W. M. Gentleman, "Some Complexity Results for Matrix Computations on
Parallel Processors," Journal of the Association for Computing Machinery,
Vol. 25, No. 1, January 19/8, pp. 112-115.

**D, A. Calahan, W. N. Joy, and D. A, Orbits, Preliminary Report on
Results of Matrix Benchmarks on Vector Processors, Systems Engineering
Caboratory, SEL Report No. 94, University of Michigan, Ann Arbor, May 24, 1976;
C. Blakely, "PEPE Application to BMD Systems," Proceedings of the 1977
International Conference on Parallel Processing, August 56-27, 1977, pp. 193-
198; P. B. Berra and A. K. Singhania, Timing Figures for Inverting Large
Matrices Containing Complex Numbers Using the Staran Associative Processor,
Rome Air Development Center, RADC-TR-76-339, Griffiss Air Force Base, New York,
November 1976; A. H. Sameh and D. J. Kuck, Linear System Solvers for Parallel
Computers, Department of Computer Sciences, Report No. UIUCDCS-R-75-701,
University of I11inois at Urbana-Champaign, February 1975.

ki

A. H. Sameh, "Numerical Parallel Algorithms--A Survey," 9j§%§§gggg
Computer and Algorithm Organization, Academic Press, 1977a, pp. 207-228;
A. H. Sameh and D. J. Kuck, "Parallel Direct Linear System Solvers - A Survey,"
Parallel Computers - Parallel Mathematics, North Holland, 1977b, pp. 25-30;
A. H. Sameh and D. J. Kuck, "On Stable Parallel Linear System Solvers,” Journal
of the Association for Computing Machinery, Vol. 25, No. 1, January 1978,
pp. 81-91.

Th. 1. Kung and C. E. Leiserson, Algorithms for VLSI Processor Arrays,

Department of Computer Sciences, Carnegie-Mellon University, 19/8.




M = M*) and positive definite (i.e., all its eigenvalues are positive, or,
equivalently, Z*MZ > 0 for all nonzero vectors Z) [Liles and Demmel 1978].

Positive definite Hermitian matrices arise frequently in numerical
work, often implicitly as the sample covariance matrix of a set of sample
vectors. This is the situation not only in the adaptive signal processing
problem which motivated this study, but in many regression and least squares
problems. For example, solving the system AX = B in a least squares sense is
equivalent to solving the normal equations (A*A)X = A*B, where A*A is positive
definite and Hermitian (if A has full rank and where A* = A conjugate trans-
pose). Positive definite Hermitian matrices also arise explicitly in varia-
tional problems, such as solving self-adjoint differential equations with
finite element methods.

The remainder of this section is organized as follows: Section 2.2

- gives a statement of the problem and the approach to the problem; Section 2.3

presents an implementation of TS; Section 2.4 computes the wij's; Section 2.5

gives an implementation of M}l(TS); Section 2.6 presents an implementation ,f

of T*(M}]TS); and Section 2.7 describes possible simplification of the
3 implementation in the case of a side-lobe canceller (SLC). Appendix C

presents a numerical example of how to use the G-S array to solve a system

of simultaneous linear equations.

15
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2.2 STATEMENT OF THE PROBLEM AND APPROACH

Let the system to be solved be MW = S, where M is a positive definite
Hermitian n x n matrix, S is an n x 1 vector, and W is an n x 1 vector of
unknowns. If T is a nonsingular n x n matrix (to be specified later), define
MT = TMT*, where T* = (T)T. Then MT is also positive definite Hermitian (by i

1 1

Sylvester's law of inertia) and W = M 'S = T*M; TS. By choosing T so that

T, M'], and T* are easily computable, we will have simplified our problem.

A good choice of T is given by the Gram-Schmidt orthogonalization process set
forth in Eq. (14) [Rice 1966]*, where <a, b>M denotes the complex inner pro-

duct induced by the matrix M: «a, b>M denotes the complex inner product

induced by the matrix M: «<a, b>M = b*Ma,

1

Zj = sj (input) A
] . <Zi, Z? > :
z}+1=z;--‘1 oz, cign-t dcien U (0)
“Zis iy
Zy = Zg (output: Z = Ts) ’

The coefficients wij =‘<Z}, Z}) M/<Z}, Z}>M are obtained by performing
Gram-Schmidt orthogonalization on the standard basis ej, 1 <J < n, where
eg = {1 if 1 = j and 0 otherwise} with the inner product <. , .>y . Hence,

the vectors eJ are orthogonal with respect to the inner product induced by MT'

which implies MT is a diagonal matrix, since <ei, ei>M = MT = 0 unless i = j.
s T ij

IS B _ .

Also, MTH =<e, e >MT = <Zi’ Zi>M' i

*J. R. Rice, "Experiments on Gram-Schmidt Orthogonalization," Math.
Comput., 20 April 1966, pp. 325-328.
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The T induced by Eq.(14) is unit lower triangular (lower triangular

with ones on the diagonal), since ZJ = Sj plus a linear combination of S] J

1 is also unit lower triangular, and both T* and (T*)']

through S, ,. Hence T
are unit upper triangular. Since M = T']MT(T'])*, we have written M as the
product of a unit lower triangular matrix L = T'], a diagonal matrix D = MT’
and L* = (T'])*: M = LDL*. This is the same decomposition provided by the
Cholesky algorithm (without square roots [Liles and Demmel 1978]), and because
the Cholesky decomposition is unique, (T']) and M; are the matrices that
would be produced by the Cholesky algorithm. In fact, we show in Sub-
section 2.6.2 that the coefficients Wy are the entries of the matrix L.
Viewing M as the covariance mai;ix of a column vector V of random
variables with a multivariate normal distribution with zero means (which is
computed as the average of the covariances of s sample vectors Vk, 1 <k<s:

M..=1/s Tk - E(V'ivj)),MT is then the covariance matrix of the random

13 k=1 1
vector Z = TV:

=
"

E(ZZ*)
ELTV(TV)*]
E(TVV*T*)

TE(VV*)T* since T is constant

T™T*

Thus MT diagonal means Zi and Zj are uncorrelated (orthogonal). This statis-
tical interpretation helps us recognize that this method may be used to solve
least squares and regression problems.

The variation on Eq. (14) given in Eq. (15) uses a nonunit lower triangular

matrix T and corresponds to the Cholesky decomposition M = LL*, This variation

17 !
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has a different implementation and different round off and stability properties,

which will be discussed later.

1
z y = Sj (input) 1
i i PTiTM
l<i<n,i<js<n} . (15
L I I iy i
Z'y -ZJ <ZJ,thQ
Zj = Zg (output: Z = TS) 4
Because of the normalization in the second line of Eq, (15), My = <Z;,Z;>y = 1.
ii
1

Hence, My = I = identity matrix. Writing L = T~ ' as before, we now have M = LL*,
the Cholesky decomposition (with square roots). As before, the coefficients

Wiy - {<z';,z}> if i 43 1/(<z'},z*}>)Lz if i=j} are the entries of the Cholesky
factor L. The coefficients from Eq. (15) are related to the coefficients from

= wl. o w!, for ifj i olumn vector of random variables
Eq. (14) by Wi = Wi P for i#j. If V is & column
as before, then the entries of Z = TV are independent Gaussian random variables
with unit variances.
In summary, the algorithm to solve MW = S is:

1. Compute the wij‘s, either directly from the entries of the M

matrix, or from sample vectors.

2. Compute MT'

3. Compute TS .

4, Compute M;](TS),
5.

Compute T*(M;

18
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2.3 IMPLEMENTATION OF TS

Qur implementation of TS is shown in Figure 2, for n = 4. Arrows

indicate directions of data flow. As in Eq. (14) (Section 2.2),

I i,
Wij = <Lyalpw/<lislipy s
and processor Pij performs the computation

i
i

i+1

Z.
i YA

= Z! - W, .
J 1

The n(n - 1)/2 processors operate as follows: The processors in row i operate

simultaneously on values passed to them by the row above. Z;+1 is passed

vertically from Pij to s and the rightmost processor Pi 41 ("diagonal"

Pinl.j
i+]
i+]

eously. A1l processors operate simultaneously and in lockstep, each row

processor) broadcasts Z to all the processors in the next row simulta-
performing its operations on the intermediate results of a different input
vector in one unit time step. Different S vectors may be piped into the top
of thie array, and a new vector entered each unit time step.

A timing diagram is sh~ in Figure 3 for the case n=4. Superscripts
indicate different vectors; subscripts, different components. The horizontal
axis is labelled in unit time steps. The top four rows indicate when data should
be submitted to the input ports at the top of the array, and the bottom four
rows indicate when the components of the output vectors Zj = Tsj are available
at the output ports at the right of the array. One can see that the m pro-
ducts Zj = TSj, 1 <Jj<m, can be formed in n+m time steps.

This implementation has the following advantages: It has a simple
interconnect structure, with unidirectional and fixed-destination data flow;

and the processors are very simple, identical, and independent of n.
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INPUT PORTS

S2 5 Sy
Z
7. OUTPUT
2 PORTS
P34 13
Z,
i
Z5
!
i 1

(HORIZONTAL MOVEMENT OF Z} ISA
Zi+l BROADCAST THROUGH THE WHOLE ROW)
J

Figure 2. Processor array for computing TS.




Inputs

Port No. 1 ! s s3 st sd

1 2 3 4 5 _
Port No. 2 S SZ 52 52 SZ
Port No. 3 S]

Port No. 4 | S} 2 g3 % 5 _

Qutputs
Port No. 1 Z} Z% Z? Z? Z? -
Port No. 2 Z; Zg Zg Zg Zg -
Port No. 3 Z; Z§ Zg Zg Zg -
. Port No. 4 Z}; Z§ ZZ’ ZZ ZZ -

Figure 3. Timing diagram for computing TS.
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Also, the processor array works without modification on vectors of size less
than n.

In the case of Eq.{15) (with square roots) of Section 2.2, the only
difference in implementation is that there must be a processor to divide Z':

by its norm (<Z';,Z'}>M)% before broadcasting it.

L acainh . &

BB e
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2.4 COMPUTATION OF THE nglél
The wij's are computed in two ways, depending on whether the matrix M
is known or must be estimated from vectors sampled from the underlying
distribution. It turns out that the two methods require similar hardware.
We first discuss the algorithm without square roots (Eq. (14)).
If the matrix M is available, the wij'S are computed by pipelining the
columns of M into the top of the processor'array, and performing the compu-
tations indicated in Figure 4. Zj(k) denotes the intermediate result

from the kth

cotumn of the matrix M. The IF-THEN-ELSE in Figure 4 may be
implemented by having a control line for each row of the array: During normal
operation (computing TS, or the ELSE clause in Figure 4) the control signal

is off, and when the data from column i has finally reached row i in the array,
the control signal should be turned on to tell the processors to compute Wige
A timing diagram for the complete implementation appears later, in Figures

7 and 9 (Section 2.6).

The configuration just described requires a divide unit in each
processor. Because each processor in row i computes the same reciprocal
T./Zi(i), the diagonal processor, Pi-],i’ can also compute this value
and broadcast it along with Z}(i) itself. This approach simplifies all but
n - 1 of the processors, but requires more data to be broadcast.

Either configuration can compute all the wij's in n+1 unit time
steps.

If sample vectors are known instead of the actual matrix, the method
is similar. If s sample vectors are given, all s musf be passed through

the array n-1 times, performing the computations shown in Figure 5a.

Each time the s samples are passed through, another row of wij's is calculated.
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2 (k) z}(k)

Y Y

J
if k= 1 then
7 k)
w4
Wozi(k)
else
. i+1 = i _ i
Zj (k) Zj(k) wij Zi(k)
i+l
Z (k)

Figure 4a. Calculating wij with the matrix M
as input (without square roots).

23 (k) 2} (k)

* |
Pyy (1 #3)
if kK = i then

¥ 1/%/2}(k)

wl

] - i - ]
\
r else
P41 . ' '
- Z}+ (k) = Z;(k) TR z}(k)]

F o
N 111
- Zy (k)

Figure 4b. Calculating w;j with the matrix M
as input (with square roots).
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ifk = i then
if not last sample then

-, i i
TR HURK Z3(k)

W,ij =
v _m ] . i
Wig ® Wij + Ti(k) Zi(k)
else N
Wij T g/
else -
i+l i i
Zj (k) = Zj(k) - wijzx(k)
i+]
Zj (k)

Figure 5a. Calculating L with sample vectors
as input (without square roots).
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3

21 (k) 24 (k)

[ |

s O A

iJ
if k = 1 then
if not last sample then

~ ) A | ""i - i
Wig =W + Zi(k) Zj(k)

1j
~n - i . 1
else
T 1/,/w1j
Wig = Wiyt Wiy
else

3700 = 23060 - il - Z}00)

i+l
Zy (k)

Figure 5b. Calculating w%j with sample vectors
as input (with square roots).
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In the expression Z;(k) the k denotes which row of wij's is being calculated.
A total of [(s + 1)(n - 1) + 1] time steps are required to compute all the
Wiy's-

As in the case where the matrix M was input, an alternate configuration
is to have only the diagonal processor compute aij = iij + Tg(k)- Z}(k) and
1/v=vij and broadcast 1/51ij

The implementation of the algorithm with sguare roots (Eq. (15)) is
similar and is shown in Figures 4b and 5b.

Since each processor Pij jn row i needs the same quantity w%i (or its
reciprocal), it is possible to have a diagonal processor Pii to calculate this
value only and broadcast it (along with Z}(k), in the case of Figure 5b).

This possibility increases communication needs slightly but makes each Pij
much simpler.

Other methods exist for computing the wij's when sample vectors are

used; they are variations on the general scheme shown above and are

discussed in Section 3.1.
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2.5 _IMPLEMENTATION OF M-!(TS)

Because MT is‘diagonal, M;]= diag(<Z:.Z:>i1), and these values are
available in any processor (I./<Z;,Z}>M is in P; for all j), it is easy to ¥
compute M;](TS): Just attach a multiply unit to each output port on the right
of the array and multiply the output at port i by the value of <Z}.Z:>&]
borrowed from the processor just to the left, P;. When the algorithm with
square roots is used, MT is the identity matrix and so nothing needs to be ’

done.

~y—— -

*

e - r——— iy
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2.6 IMPLEMENTATION OF T*(M%]TS)

This step of the algorithm, the formation of T*(M}1TS), has three differ-
ent implementations. The first, the unit vector method, uses the array shown
in Figure 2 (Section 2.3) with n additional processors on the right. It can

solve the m problems MW = S', 1<i<m, in time O0(mn) with high efficiency

m
n

processor on-time/(total time * total processors)

(m/m+1) [(n+1)2 - 2)/(n+1)2]

The second method, the reverse flow method, requires some changes to the
array but preserves the simple interconnect scheme. It can solve the m

problems in time O(m+n) but with somewhat lower efficiency
E=m/[m+ 2(n+1)]

The third method, the transform space method, is essentially different from the
other two in its use of the array to compute the filter function, F, directly.
The first two methods compute the weights, W, which must then be used (by another
piece of hardware) to compute F.

Overall timings of the different implementations are §iven. A more
detailed comparison of the unit vector and reverse flow methods is given in

Appendix F.

" 2.6.1 Unit Vector Method

]TS) with a vertically connected

The unit vector method forms T*(M}
array of n simple processors connected to the output ports of the array as
in Figure 6. First, the vector S is passed through the array, and the n
numbers Yj = quT¥g)j are formed and stored in registers inside the [
processing elements (PE's). Then,the n unit vector Ej (Eg =71ifi=jand 0
otherwise) are piped through the array to form the n products TEj. Given that

29
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L J

e PE]
PE2
PROCESSOR i
ARRAY
» PE3
> PE4
Dj']
l -
.= D, R |
| D, DJ_} + (TEY); - Y
n .
D.=0,0 =3 (TE'), Y. = OUTPUT

o

Figure 6. Unit vector method array.
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n n
(T*), = k§=jl TV = k% (TEj-)kYk

and that terms (TEJ)k and Yk are both available at the kth output port,

these terms may be multiplied, added to a partial sum computed by PEk-]
during the preceding time step, and passed to PEk+] for the next time step,
as shown in Figure 6.
A timing diagram for the entire process of solving Mwi = Si for
n=3and 1 <i<21is shown in Figu}e 7. Y; denotes (M}]Tsi)j, and D;
denotes the output of PEj with input (TEi)j.
A timing analysis may be made easily from the timing diagram. A :

total of n time steps are required to compute the wij's. Not counting these

time steps, a total of TUV = (m+1)(n+1) units of time are required to pass m

vectors S' and mn unit vectors fJ through the array. We may compute the
efficiency of the array where Tp is the time processor p is on, P is the number

of processors, and T is total time required to finish processing, as follows:

FEEEDY To/(T+P)
all processors
Each of the n{(n-1)/2 processors in the array has Tp = m(n+1), and each of

the n outboard PE'S has Tp = mn; therefore,

Euv

et

m+1 (n+1)

Thus, approaches 1 as m and n grow. The unit vector method is thus

Euy
an efficient implementation, and it is the same for both the with-sauare-rocts

and without-square-roots versions of the alqorithm,
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Time:

1

Array Input #1

#2

#3

Array Qutput #1

#2

#3

PE Output #1

#2

#3

Figure 7.

Y1 TE-| TE1 TE1 Y]

3
g

m
N W

m
W W

2

TE1 TE] TE

1

TE, TE, TES

2

Y3 TE3 TE3 TE3

Timing diagram for the unit vector method.




2.6.2 Reverse Flow Method

The reverse flow method depends on the interesting fact that the array
can compute T*Y by inputting the components of the vector Y at the right !

side of the array, performing all the computations in the reverse order

(using GGJ instead of wij)’a"d extracting the outputs at the top of the array.
. This process is illustrated in Fiaure 8. MNow the broadcasts take place
P in the vertical direction, whereas when computing TS the broadcasts were
; in the horizontal direction.
A proof of this fact for the algorithm without square roots (illus-

trated here for n = 4) depends on the fact that T can be written

The i~ matrix in this product represents the computations oerformed by

(1 0 o0 o] (1 0 0 0] 1 0 0 o]
o1 0 0 0 1 0 of |w,l 0 O
T:

' 0 0 1 0 0 -Wy3 1 0 w3 010
E [0 0 -wgy T YIRS W, 00 1J
) th
!
]
!

the (n-1’)th row of the array. Hence,

o= [0 = pr !

’ B 0 0 0] 1 0 0 0]

: _ W, 10 0 0 1 0 0
1

- Wiy 01 0 0 Wy, 0

‘ i Wy 00 1] [0 wyg 0 1]
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C = A (BROADCAST)
D
DATA FLOW FOR COMPUTING T
B
A — C A=C- Wi j D
= D (BROADCAST)
D

DATA FLOW FOR COMPUTING T*

Figure 8. Reverse flow method.
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w13 w23 1 0

| W14 Woq Y34 1

(1 Wy Wy Wy |
0 1 Wys Wy
) 0 0 1 Wy,
0 0 0 1 ]
(1 0 0 W] (10 w5 0] (1w, 0 0] -1
] 0 1 0 Wy, 0 T Wy, 0 6 1 0 0
00 1 Wy, 0 0 1 0 60 0 1 0
(o 0 0 1 | 0 0 0 0 0 0 1)
[1 -w, 0 0] [1 0 Wy 0] 1 0 0 AWy,
0 1 0 o0 0 1 Wy, 0 0 1 0 -y,
) 0 0 1 0 0 0 1 o0 00 1 -y,
0 0 0o 1] 00 0 1) [o 0 0 1

The ith matrix in this product for T* represents the computations performed
by the (n-i)th column of the array during reverse flow.

The same type of argument shows that the wij are the entries of the
matrix L in the Cholesky factorization M = LDL*. Recall from Section 2.2

that L = T7)
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1 %14
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01
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1 0
= L.

The proof is similar for the algorithm with square roots:
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Note that the quantity being broadcast vertically in column j gets multiplied

by wjj before broadcasting, since the processors in column j do not contain

the number wjj.
[ 17w
wl
LI
k!
| Wi

Also,
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Fl/wi]
Wiz g

Wiz W3 1w

] ]
| ¥ig W Wy /Wy |
so that the wij's are the entries of the Cholesky factor L in M = LL*,
except that the wii's are the reciprocals of the diagonal elements of L.

The same lockstep pipelined operation for data movement that was used

for T is used for T*, except backwards. A timing diagram for the entire

operation of solving Ma' =S’ for n =3 and 1 < 1 <4 is shown in Figure 9.

A shift register of length n-j is required at output port j in order to

e hacamans s o

resubmit the components of the vector M}]TS to the array simultaneously.

1

In Figure 9, Y3 denotes M}lTSj and W3 = M7'sY, the sotution.

As before, we analyze the timing excluding the time steps

required to compute the wij's. If m vectors S' are to be input at the top,
the total time required is m (to input the S''s) plus n (to compute TS')

plus 1 (to compute M}]Tsi) plus T (to resubmit Yi) plus n (to compute T*Y):
TRF =m+2{(n+1). =0(m+n)

This relation is to be contrasted with the TUV = {m+1)(n +1) for the unit
vector method. Analyzing efficiency as before, but interpreting Pij as two

processors, one for T and one for T*, we have n{n - 1) processors being used

} for m time units and n processors for m units, for an efficiency
{ !
d Egp = m/[m + 2(n +1)]
e
‘ This efficiency function has a behavior different from Eyy for the unit vector

method: ERF is Tow for small m and large n, whereas EUV was an increasing
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T T —
Time: 1 2 3 4 5 6 7 8 9 10 11 712 13 14 15
input at top #1 M” M]Z M13 S; S? S? S?
of array
1 2 3 .8
#2 My Moy Mp3 S S5 52 S
. 1 2 3 4
#3 M3y M3 M3z S3 S3 53 53
output at  #1 15} 158 18 157
right of array
1 -2 +3 -4
#2 TS, 15 1S, TS,
# T5; ng ng ng
. 1 2 3 8
v=ults o novon N
#2 Y; Yg Yg Y‘z‘
: #3 v} Y§ oV
input at  #1 Y} Yf Yf Y?
right of array
#2 vnovs vy,
#3 Y; v§ Yg Yg
3 output at  #1 oW W
. top of array
i w; wg W Wy
i Wl w§ wg wg
Figure 9. Timing diagram for the reverse flow method.
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function of both m and n. This is a typical speed/efficiency design tradeoff
often encountered when designing parallel systems [Chen 1971a; 1971b].* l

2.6.3 Forming the Filter Function in Transform Space

The ultimate output of the system under consideration is the filter

function

F=wx

where X is a column vector of receiver inputs. The algorithm discussed in
the preceding two subsections (2.6.) and 2.6.2) computes W, assuming another
piece of hardware is available to form the inner product W*X. It is possible

to avoid computing W itself, and to form the filter function as follows:

F o= WX

(M~ Ts)*x

]

S*M™ X

Y]

-1

= sex(T*) I 7y

(TS)*(TMT*) 1 TX

u

"

()M, (TX)

Recalling that MT is a diagonal matrix, we see that the vector (TS)*M}1 may
be computed once and stored, and then its inner product with TX computed.
The hardware required to implement this approach is virtually identical

to that of the unit vector method. After the wij's have been calculated

*T. C. Chen, "Unconventional Superspeed Computer Systems," Spring Joint
Computer Conference, 1971a, pp. 365-366; T. C. Chen, “Parallelism, Pipelining,
and Computer Efficiency," Computer Design, Vol. 10, 1971b, pp. 69-74.
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(including the entries of M;]), the steering vector S is passed through the
array, and the values [(TS)*M;]]i stored in a vertically connected array of
processors to the right of the main array, as in Figure 10. Then, as the X

vectors are pipelined into the top of the array, their results (TX)i will be

available at PEi where [(TS)*M}]]i is stored, and inner products of the vectors
will be formed just as in Figure 10. The timing diagram is similar to that
in Figure 7, with the value of F = W*X being available from PEn n+l time

steps after X is input.

‘ ‘ l ‘ o, D, = Dy + (TX)J. - Q |
' — PEy -1
l Q; = L(Ts)Mp']
(TX)' e -
ARRAY o J D, = 0
g T
=1 J
' Dy J

(TS)*M}‘TX = OUTPUT

Figure 10. Computations for forming the filter function in
transform space,

This approach has two advantages over approaches described in the
preceding two subsections. First, the array produces the desired output
directly instead of just the weights W. The hardware is as simple or simpler
than the unit vector method implementation and much simpler than the reverse

flow method. Second, it is possible to continuously update the W, 's without

J
temporarily halting computation of the weights; in this way, the wijs are always

computed from the most recent information. This point will be discussed

further in Section 3.
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The disadvantage of the transform space method is that in a real

system, the X's may be sampled at a far faster rate than the array is able

to process them. The X's are accepted one per time step of the array (and
t‘ one F = W*X value is computed once per time step), whereas the sampling rate
of the radar may be many times faster. (The unit vector method and reverse
flow method do not have this disadvantage because, given W, F = W*X can

be calculated extremely fast.) Whether this downsampling would adversely

affect the overall system performance depends on the individual system,

R0 Ade sl s b . i
»

-
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2.7 _THE SPECIAL CASE OF A SIDE-LOBE CANCELLER

It is possible to simplify our proposed implementation in the case of
a side-lobe canceller (SLC), because of the special form of the steering signal
(all zeroes, except for a one on the component corresponding to the main beam).
It turns out that the best way to exploit this special form is to have the one
in the steering signal occur in the last (nth) component. With this S, TS = §
(since T is unit lower triangular); thus, no work is required to pass S through
the array.

The effect on the unit vector method is to reduce the sum defining the

output,
n T n —J—
* = = -
(TY), k2= k¥ kZ= (Ted), Y, s
to

T3y -l
W, = (TES) M ,
J n Tnn

where MT = diag (MTJJ). Thus, only one outboard processor is needed at output
port n to compute wj. The overall timing is the same.

The reverse flow method also simplifies because the vector to be passed
backwards through the array is known a priori, (0,...,0,M}ln)T, eliminating
the need for shift registers and reducing the overall length of the pipe by
n steps.

The transform space method becomes exceedingly simple, with only one

outboard processor required at output port n, and since
F o= (TS)*MZ(TX) = (MZ1TX)
T T n ’

its output is simply the filter function.
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3. SYSTEM IMPLEMENTATION CONSIDERATIONS

This section describes the characteristics of different versions of the
basic implementation discussed in Section 2, and various radar engineering
considerations and how they affect the choice of implementation. We consider
different ways of computing the internal coefficients (Section 3.1); error
sensitivity and fault tolerance (Section 3.2); different ways to perform arith-
metic and growth bounds for intermediate results (Section 3.3); implementation
with 0(n) processors instead of 0(n2) (Section 3.4); and construction of
individual processors (Section 3.5). In Section 3.6 we summarize the variety
of system implementation choices discussed in Sections 3.1 through 3.5, and
show how different radar engineering system parameters affect implementation
choice. Finally, in Section 3.7, we select a typical set of system parameters
and give a detailed design for a Gram-Schmidt processor incorporating those

parameters.

3.1 CALCULATION OF INNER PRODUCTS

The algorithm of Section 2.1 requires the calculation of many inner
iSi . .
pro?ucts.<Z.,Zi>M. The method given, which computes the sample average
i i . .
%;Zj(k)zi(k) (see Figure 5), is one of several nossible methods. A1l
the methods involve averaging over samples, as in Figure 5, but can weight

different samples differently:

m m
E" = k}; weE, . (16)

Here Ek is one sample value (say,Z;(k)Z}(k)),wk is its weight, and £" is the

estimated average using m samples. For E™ to be an unbiased estimator of

the true average, it is necessary that w, > 0 and Z:wk= 1. Subject to this
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mild restriction, we are free to choose the wv's SO0 that our estimate [ has

desirable statistical pruperties, such as beinq able to closely follow the
true average as it changes in time without beinn confused by noise spikes.

It is well known that if the underlying distribution from which the
Ek's are sampled is stationary in time, then the best unbiased estimator of *

their mean is an equal weighting of all available samples:

m
m_ 1 ¢«
E—n—]kZ;Ek. (17)

p—

When the underlying distribution is changing, as it will in any real system,

then Eq. (17) introduces a bias, because it weights old samples as much as new

ones. A good choice of wk's must satisfy two conditions: It must average
over enough samples to compute a statistically significant result {at least

n samples (n=number of weights) are required just for the matrix M to

be nonsingular), and it must weight the recent values heavily enough to
follow the average quickly, but not so heavily that noise spikes confuse it.
The optimal choice of an averaging method probably would vary from

system to system, but there are certain schemes which work well in many
situations and are worth analyzing. The methods have different implementa-
tions, depending on the rest of the system (e.g., implementations of Sections
2.6.2 and 2.6.1 versus that of Section 2.6.3 ). After the discussion cf each
method, therefore, we analyze various implementations. Finally, we present
test results using actual radar data. These results allow us to compare

how well the methods maximize the signal-to-noise ratio (SNR) of the system.
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Block Averaging

First, we have block averaging, the method described in Section 2. In
this method, the wij's are periodically reinitialized to zero, data are passed
through the array, and the wij's are formed, giving equal weight to each
product in the sum (as in Eq. (17)). This form of averaging may be accom-
plished using the same set of K samples to comr te the wij's in each row, or
different sets. If the same set of samples is used, buffering is required
to save the data. Buffering occurs just before the inputs of the array,
in order to pass the data through the array n-1 times. If buffering is not
used, a total of K(n-1) samples is required, and the method is called cascaded
block averaging. The first time through is to compute the first-row averages
(i
the outer "else" clause of Figure 5. Z?(Z) = 7.(2) - w1jz}(2) in row 1 and the

J J
“if k=i" clause in row 2. In general, the copy of the data input to the array

and ﬁ]j) in the "if k=i" clause in Figure 5. The second pass performs
1

between time steps (m-1)K+1 and mK finally arrives at row m and is used to
compute W between time steps (2n-2)K+1 and 2m-1)K. Steering vectors S (in
Md=S) can be input starting at time mK+1, and all the values of TS are avail-

able at time (2n-3)K+1.
If no buffer is to be used, then a different set of K samples is input

in each time period (m-1)K+1 to mK. This method, called cascaded block
averaging, will compute values of w1.j close to their true values if the
underlying distribution determining the input values changes sltowly and
enough samples are used. Recall the result of Reed, Mallett, and Brennan
[19747 that says approximately 2n samples are required for an expected SNR

of 3 dB within optimum.

*
_ ;. S. Reed, J. D. Mallett, and L. E. Brennan, "Rapid Convergence Rate
in Adaptive Arrays," IEEE Trans. on Aerospace and Electronic Systems,

Vol. AES-10, No. 6, November 1974, pp. 853-863.
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Exponential Averaging

Second, we have exponential averaging. In this case, we take a

weighted sum of the old average and the new data:

m+l _ m

E = SEm+1 + (1-S)E" 0<S<1 . (18)
If S is close to 1, then the new average Em+] is very responsive to new data
Em+]' If S is close to zero, Em+] changes more slowly, being determined mainly

by the old average. Exponential averaging can be implemented either with or
without a buffer, as in block averaging, or, once the system has been started
up and wij values are available, the wij's can be updated by inputting just
a few sample voltage vectors and averaging them in. This is an advantage
over block averaging: With block averaging, each time the wij's are to be
updated, a lag time of (2n-3)K is needed, where K is at least n and
preferably 2n; K may be significantly smaller with exponential averaging.
Note that it is possible either to exponentially smooth wij itself, or

to smooth its numerator and denominator separately, before dividing them,.

(If, in addition to this separate smoothing, the denominator is approximated
by its closest power of 2, the problem of doing division is reduced to

shifting).

Window Averaging

Finally, we have window averaging. In this case, the last K samples
are always used to compute the wij's, thus using the most recently available
information at all times. This method requires saving a buffer of the last
K values used. When a new value (e.g., 7:-2;) is computed, it is added to
the window average, put on top of the buffer, and the oldest value removed
from the bottom of the buffer and subtracted from the average. The buffer

can conveniently be implemented as a shift register. In addition to always

using the most recent data, window averaging has the same advantage as ex- '
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ponential over block averaging: It does not always require a laq of (2n-3)K

samples to update the wij's. The disadvantage, of course, is the need for a
Tong shift register (at least n and probably 2n words) for each average

(n(n-1)/2 or n(n-1), depending on the implementation).

The transform space method of Section 2 can be used as well as any of
the above methods, but its real advantage lies in the fact that since samples
(in contrast to steering vectors) are constantly being passed through the
array, the wij's can be updated simultaneously with the calculation of filter:
functions. Hence, when exponential or window averaging is used, no delay at
all (after startup) is needed to update the weights. Each filter function
is always a function of the most recent information.

Reed, Mallett, and Brennan [1974] have shown that the expected value
of the achieved SNR is 10 10910[(K+2—n)/(K+1)] dB below the SNR achieved with
optimal weights. This expected loss is about 3 dB when the number of samples,
K,equals 2n. Of course, if a great deal of clutter is present, more samples
may be required to average it out. Also, Brennan [1974]* has recently shown
that if the weights determined by K sampies are in turn used to forrm filter
functions from those came samples instead of a different set of samples (as
in nontransform space operation), then the expected SNR is actually higher
(see Appendix A).

We now present some graphs of system performance versus sample size for
both real and simulated data, varying numbers of weights, and varying aver-
aging schemes (Figures 11 through 21). System performance is measured by

how many decibels down the achieved SNR is from the optimal SNR:

L.E. Brennan, "Performance of the Sample Covariance Matrix Algorithm
for Adaptive Arrays," unpublished manuscript, 19 July 1979,
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Performance = 10 10910[(|S*w|2/w*Mw)/S*M']S)]

The real data is taken from an operational 5-weight adaptive system, and the
simulated data model is described in Appendix H. The true matrix M for the
real data is estimated by averaging over all available samples (100). The
different algorithms used are Cholesky, Gram-Schmidt using blocked averaging,
Gram-Schmidt using exponential averaging (for various exponential weights,
i.e., the factor S in Eq. (18)), and Gram-Schm’dt using cascaded block
averaging. In the case of simulated data, the various model parameters are
the number of weights, number of jammers, location and power of the jammers,
and the ratio of strongest jammer power to receiver noise power (per receiver).
This last quantity is the spectral condition number of the matrix. The use
of tapped delay lines (one-sample long) is also indicated.

For the real data (Figures 11 and 13) we see that the results for
Cholesky and blocked G-S almost overlap. They are mathematically identical
algorithms, and any small difference is attributable to roundoff error (all
arithmetic is 32-bit floating point with 24-bit mantissas). Cascaded blocked
G-S has essentially the same performance as blocked G-S; but exponential G-S
lags behind, performance improving, but still poor as the weight decreases

(which means the new samples are weighted less than the old).

For the simulated data with 5 weights (Figures 14 through 17),
Cholesky, blocked G-S,ana cascaded blocked G-S all have virtually identical
performance, but exponential becomes poorer as the number of jammers increases
(from 1 to 4).

With 10-channel simulated data using 5 jammers (Figure 18), cascaded

G-S, blocked G-S,and Cholesky are again virtually identical. In fact,
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#4 (
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»
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[34]

Ratio of power of strongest jammer to receiver
noise power = 40 dB.
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cascaded G-S performs somewhat better, because it uses n-1 times as much data

as the other methods. Again, exponential performs the poorest, with a weight *

of 0.25 being best in this case (Figure 19).

With 35- and 50-channel simulated data, using 10 and 20 jammers,
respectively, blocked and cascaded G-S and Cholesky are again virtually
identical, with exponential G-S performing roorly (Figures 20 and 21,
respectively).

Seven of the nine cases achieve an SNR within 3 dB of optimal
after 2n samples; the other two cases are within 5 dB.

The location of the jammers (first number in parentheses in item 4
of the simulated-data captions) is given in degrees from boresight, and,
jammer power (second number in parentheses) is expressed as decibels below
the strongest jammer.

We spent a great-deal of effort analyzing cases with Tow numbers of
weights because the effects of changes in the number of jammers and exponen-

tial weights show up more quickly.
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Figure 19. Simulated data:

1. Number.of weights = 10
2. No tapped delays

3. Number of jammers = 5
4

Location and power of jammers:
#1 (-53.1°, 8.0 dB)

#2 (-36.9°, 6.0 dB)

#3 (-23.6°, 4.0 dB)

#4 (-11.5°, 2.0 dB)

#5 (0.0°, 0 dB)

S~

5. Ratio of power of strongest jammer to receiver
noise povier = 40 dB.
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Figure 21. Simulated data:
1. Number of weights = 50
2. No tapped delays
3. Number of jammers = 20
4. Location and power of Jamme 5: )
#1 (-73.7°, 9.5 ng 1 (- 34 05°, 4.5 dB)
42 (-66.9°, 9.0 dB *12 (-31.3°, 4.0 dB)
#3 (-61.6°, 8.5 ng #13 (- 28 7°, 3.5 dB)
#4 (-57.1°, 8.0 dB #14 (-2 .1°, 3.0 dB)
#5 1°, 7.5 dB) #15 (-23.6°, 2.5 dB)
#6 (-49.5°, 7.0 dB) #16 (-21.1°, 2.0 dB)
#7 (-46.0°, 6.5 dB) #17 (-18.7°, 1.5 dB)
#8 (-42.8°, 6.0 dB) #18 (-16.3°, 1.0 dB)
_ #9 (-39.8°, 5.5 dB) #19 (-13.9°, 0.5 dB)
. #10(-36.9°, 5.0 dB) #20 (-11.5°, 0 dB)

R S

5. Ratio of power of strongest jammer to receiver noise
power = 20 dB.

62

o0

e

1Y)




3.2 FAULT TOLERANCE AND NOISE SENSITIVITY

In this section we analyze the effect of the system's different
failure modes on performance, as measured by the SNR.

External Failure Mode

The first category of failure mode is external, which means that
although the processor array is functioning normally, somethina is wrong with
the antenna/receiver subsystem supplying inputs. The possibie failures we
examine are 1) input j is zero (others normal), 2) input j is a nonzero
constant {others normal), and 3) Gaussian noise of power i is added to input
j (others normal).

When the input j is zero, the system continues to function, computing
the correct weights for an n-1 weight system and a zero weight for input j.

To verify this phenomenon, note that all the w1.j values, 1 <« i - j-1, are zero,
because (in the notation of Figure 5) Wij = Wij + 7;(k) . Z;(k) and Z} is

zero, SO wij is zero, Z? is zero, w2j is zero, and so on. Thus, Zg = 0,

and (with the odd convention that 1/0=0) we have wj1= 0, j*+1 < 1 < n, since Wy
is “Gi/zlzg Eg = w,, - (1/0) = 0. Thus the values computed in columns i+1 to

ji
n of the array have nothina subtracted from them in row j of the array: They
are independent of input j. Since the values computed in columns 1 to j-1
are obviously independent of column j, all the other computec values are
computed correctly as though input j were missing. Since 1/wjj is taken to
be zero, and the output at port j on the right of the array is multiplied by
]/wjj’ we see the system operates as claimed for the transform space and unit
vector methods, because they qet a zers contribution from output j and only
operate the array in the forward direction discussed above in this paragraph.

To see that reverse flow also operates normally, note that the zero input at

port j on the right remains zero as it moves left across the array (since the
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it has

wji‘s in row j are zero) and when it is broadcast vertically by Pj 5410

no effect on the values computed by rows 1 to j-1. Since rows j+1 to n are
similarly unaffected, we see all weights except j are computed normally, and
weight j is zero as desired.

The optimal SNR of the n-1 weight system can be expressed in terms of

the old optimal SNR with n weights, the jtP

th

optimal weiaht wj (when all n
are available) and mJ = j~ diagonal element of the inverse of the truye n x n
covariance matrix:

2
Iw.|
= N R .
SNRyveworT = SMRoLpoeT 3 (19)

This result will be derived later.

When input j is a nonzero constant, a similar analysis shows incorrect
weights are computed. Approximately O values for wij in column j are computed,
since Z} is Gaussian with zero mean. Thus Zg is constant and nonzero, and

1/wjj is nonzero. The values of W5 in row j are again approximately zero,

but output j, even after multiplication by 1/wjj,remains approximately con-

stant and nonzaro. Thus incorrect values are computed by all three methods.
To examine the case of Gaussian noise, we need some general

results on the effects of perturtations in the weights on the SNR. These

results are derived in Appendix B and presented below.

The SNR is given by:

SNR,, = [S*|Z/Mem (20)
where SNRw is the SNR achieved using W as weights. When using the optimal
weights, Wopy = M']S, we have

SNRgpy = S*W = WHMN = SWMIS . (21)
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Suppose that W = wOPT + E, where E is an error vector. Then we may write

SNRw in two equivalent forms:

Sy E*ME)_ E*ME
SRy = (1 - ) MRgpy + foply * SR
SNR
- o pwfm o _SS* ., T OPT
SNRypy - E (” SNROPT)E T : (22)

The first expression for SNRw shows it is a weighted linear combination of
SNROPT and SNRE, and the second expression shows how the degradation in SNR
depends on the eigenvalues and eigenvectors of the positive semidefinite

Hermitian matrix (M - SS*/SNROPﬁ. In particular, a lower bound for SNRW is

SNRy > SNRgpy = A (M) = TIE[IZ + 0(l1E[1%) (23)

which shows that the SNRw depends quadratically on £, and is worse if the
largest eigenvalue of M, Amax(M), is large. The bound on Eq. (23) can be
(M),

and if E is proportional to it. Physically, since eigenvectors of the

attained if S is orthogonal to the eigenvector of M belonging to Xmax
covariance matrix M are the expected signal of noise sources and the eiaen-
value is the power of the noise source, the worst dearadation in SNR shoud
occur when the steering signal S is aiminc the array in a direction ortho-
gonal to the strongest noise source but [ is aimina exactly in the direction
ot the strongest noise source.

We may also examine the effects or perturbations on arbitrary
(nonoptimal) weights W. Suppose that instead of W weights, W=W+E are
used. Then the new SNR using W is

. SNR, ss* \ 2
SNRjy = SNR,, - 2 W;MW-Re”(M - WR—W)W‘ El +oClIELS) (24)




where the quadratic and higher-order terms are indicated by O(I|E||2)

~

Now the dependence on £ is linear, with the effect on SNRN being targest

when E is proportional to (SS*—SNRN-M)N (the SNR can increase or Jecrease),

and to a linear approximation lies in the range

Moo SS% wl] « [1E]] < SNR~ <[SNR
SAR, =2 P

+ ii::; H(M SNR )”‘ ' ] ' (25)

When E is orthogonal to (M - SS*/SNRw)w, the dependence of SNRy on E is

ZSNRw |
W*MW

SNRw ~

quadratic. Thus,

SNR, = linear terms in Eq. (20)

SNR
W Q(WHNE) ( SS*
+ higher-order terms in [[E|| . (26)

When W = Wgpy, Eq. (26) simplifies to Eq. (23).
Now let us return to the specific probiems of Gaussian noise of power
p being added to input j. (The following results are also derived in

Appendix B). Adding this noise is eauivalent to addino p to the sth

diagonal elements of the true covariance matrix M to get the new matrix M,

M = M+A, where Akz = {p if k=2=3,0 otherwise}. We may express M"l in terms

of U™
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where M = {mij} and M| = {m'J}. Thus the new weights Q.= Mls can be

expressed in terms of the old weights

N _ _ 0
W=W+M ! (—-flrf) W; +jth row . (28)
]+pm‘]‘] 0
Hence the new weights are the sum of the old weights and the jth column of

-1

M ' times -pwj/(] + om¥), In particular, the new jth weight

by = w0+ et

So as p increases, wj decreases, approximately in proportion to 1/p for o
large. As p approaches infinity, wj approaches zero and the system operates
as though there were only n-1 weights, because all the information in

channel J is being obscured by the large noise.

We must now distinguish between two subcases, depending on when the
noise is added to the system. Case 1 occurs when the noise is added by the
antenna/receiver subsystem, so that the sample's voltage vectors used to
compute the filter functions also contain noise, and case 2 occurs when the
noise is added later, thus affecting the weights only and not the sample
voltages for the filter function. In the first case, where the noise is
present from the beginning, it is as though the true covariance matrix of the
noise process changes (by adding o to the diagonal); in the second case, the
true covariance matrix remains the same, but the weights change.

In the first case, we can compute the optimal SNR of the new system

with noise SNRNENOPT=S*M'1S using Eq, (23):

- 2 » jj
SNRyewopT = SMRoLpopT - [p‘wjl /(1 + om )] . (29)
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SN

RneworT =
by l” %—-———— _____________ — _

SNRoLnoPT - 33

Thus, the optimal SNR achievable with noise p added varies as shown in
Figure 22. For p small it decreases approximately linearly with a slope
of -le|2. If ijl is large, then system performance depends heavily

on the jth channel; hence, adding noise to that channel is particularly

. i3
bad. Also, if m’Y is small, then the lower bound for SNRNENOPT’
2 » s .
SNRoLoopT -~ (IWJ-| /m”)- is small,

SNR
OLDOPT ¢ /

Noise =——»

Figure 22. Effect of added noise on optimal SNR,

In fact, if S = ej = {0,...,0,1,0,...,0} (1 in §*N place), then

= mdd e pid = :
SNRpy = m” and wy = m>.  Then SNRyc oor = 1 /(p + 1/SNRy  popy) » Which
approaches 0 as p approaches infinity.

It is possible to make a physical interpretation of mjj being
small. Mathematically, it means the covariance matrix MnEM has an eigen-

th

vector approximately equal to ey = (0,...,0,1,0,...,0) (1 in j°" entry) whose




corresponding eigenvalue is large, which the matrix Mn-] = M with jth row and

jth column removed does not have. Physically, this means the n weight system

with matrix Mn is capable of adapting to a strong noise source, with steering

signal e whereas the n-1 weight system with matrix M__, cannot. Since

I [T 3
m'Y = A (M / x. (M
j=1 JvV 'n-1 j=1 9 n
(Agx) = jth eigenvalue of matrix x), mjj will be small if this relationship

of eigenvalues and vectors of Mn and Mn-1 holds. In other words, mjj is

small if the jth channel is important for the system to be able to adapt

to some large noise source. The system will then be especially sensitive
to noise in that channel.

In the second case, where noise is added late so that it affects
the weight computations but not the true covariance matrix M, we may use
Eas. (22), (24), and (25) to analyze system performance. Assuming that
the weights used after perturbations are the optimal weights for the noise
field seen by the array, i.e., ﬁ = ﬁ-15, we may use Eqs. (21) and (26) to

compute the new SNRQ:

. 2, 2 i -
SNRy = SNRopy = (0" lws | m”/[SNROPTU + oY)

- 02|Wj|2(2 + om”)] . [SNROPT - lelz/m”] . (30)

~

2 - _ oo .
Note that ij| /mjj = SNR-, where E = W - Wypy. SNRj is a decreasing

function of p, with a lower bound of

. v 12 jj)
SNRy > SNRypp (lel /m




T

which is the same Tower bound as for SNRNENOPT’ given in Eq. (25).

Thus, if an infinite amount of noise is added to channel j, effectively
turning the system into an n-1 weight system, the degradation in SNR can

be bounded independent of where in the system the noise is added. In both
cases, a large jth weight le| or a small mJ indicates the system is
particularly sensitive to noise in that channel. This analysis also proves
Eq. (16).

We now present some simulation results of adding noise to a 5-weight
system with 3 jammers. Figure 23 1is a control case with no noise added.
The total noise power (summed over all inputs to which noise is added) is
4 dB above the strongest jammer. These results correspond to case 2 of
the above discussion, where the noise affects the weight calculation only.

Apparently, inputs 2 and 3 (Figures 25 and 26) are very insensitive
to noise; inputs 1 and 4 (Figures 24 and 27) are somewhat sensitive; and
input 5 (Figure 28) is very sensitive. This sensitivity was determined by
looking at the steady-state cancellation for either G-S or Cholesky (i.e.,
performance degradation for 20 samples). Since the steering signal for these
latter simulations is (0,0,0,0,1), i.e., an SLC with channel 5 as the main,
channel 5 should, by far, be the most sensitive. The other inputs are not
as sensitive. Since there are only 3 jammers, as long as only one input
is affected enough degrees of freedom remain to effectively cancel the
jammers (unless, of course, channel 5 is affected). When 3, 4, or 5 channels
are affected (as in the last three plots, Fiaures 29 through 31), so that
there are not enough degrees of freedom to cancel the jammers and the extra

noise, performance degrades markedly.
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Simutated data:
Number of weights
No tapped delays
Number of jammers

Location and power of jammers:

#1 (-36.9°, 6.67 dR)
#2 (-11.5%, 3.33 dB)
#3 (+11.5°, 0 dB)

Ratio of power of strongest jammer to receiver
noise power = 40 dB

No noise added.
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« CASCADED BLOCKED GRAM-SCHMIDT

2 =

NeMEER CF SAMPLES

Simulated data:

1.

2.
3.
4

n
()]

Number of weights
No tapped delays
Number of jammers

3

Location and power of jammers:
#1 E-36.9°, 6.67 dB)

#2 (-11.5°, 3.33 dR)

#3 (+11.5°, 0 dB)

Ratio of power of strongest jammer to receiver
noise power = 40 dR

Noise added to channel 1 of total power
4 dB above strongest jammer.
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- — - CHOLESKY

- -~ EXPONENTIAL GRAM-SCHMIDT, WEIGHT = .28 N
- » = BLOCKEC GRAM-SCHMIDT -
_ > - CASCADED BLOCKED GRAM-SCHMIDY .

i Figure 25. Simulated data:
r . 1. Number of weights

il
o

2. No tapped delays
3. Number of jammers
4

3

Location and power of jammers:
#1 (-36.9°, 6.67 dB)

s #2 (-11.5°, 3.33 dB)

. #3 (+11.5°, 0 dB)

| 5. Ratio of power of strongest jammer to receiver
‘ noise power = 40 dB.

6. Noise added to channel 2 of total power
4 dB above the strongest jammer.
\
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Figure 26. Simulated data:
1.  Number of weights = 5
2. No tapped delays
3. Number of jammers = 3
4, Location and power of jammers:
#1 (-36.9°, 6.67 dB)
#2 (-11.5°, 3.33 dB)
#3 (+11.5°, 0 dB)
5. Ratio of power of strongest jammer to receiver
noise power = 40 dR
6. Noise added to channel 2 of total owoer

4 dB above strongest jammer,
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Figure 27. Simulated data:
1. Number of weights =5
2. No tapped delays
3. Number of jammers = 3
4. Location and power of jammers:

#1 (-36.9°, 6.67 dB)

#2 (-11.5°, 3.33.dB
#3 (+11,5°, 0 dB) )

5. Ratio of power of strongest jammer to receiver
noise power = 40 dR

6. Noise added to channel 4 of total ﬁbwer
4 d8 above strongest jammer.
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Simulated data:

1.

2.
3.
4

Number of weights = 5
No tapped delays
Number of jammers = 3

Location and power of jammers:
#1 (-36,9°, 6,67 dB)

#2 (-11.5°, 3.33 dB)

#3 (+11.5°, 0 dB)

Ratio of power of strongest jammer to receiver
noise power = 40 dB

Noise added to channel 5 of total pcwer
4 dB above strongest jammer.
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Figure 29. Simulated data:
1. Number of weights = 5
2. No tapped delays
3. Number of jammers = 3
4

Location and power of jammers:
#1 (-36.9°, 6.67 dB)
#2 (-11.5°, 3.33 dB)
#3 (+11.5°, 0 dB)

5. Ratio of power of stronaest jammer to receiver
noise power = 40 dB

6. Noise added to channels 1, 2, 3 of total power
4 dB above strongest jammer.
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>_Figure 30. Simulated data:

1. Number of weights =5
2. No tapped delays

3. Number of jammers = 3
4

Location and power of jammers:
#1 (-36.9°, 6.67 dB)

#2 (-11.5°, 3.33 dB)
#3 (+11.5°, 0 dB)

5. Ratio of power of strongest jammer to receiver
noise power = 40 dB

6. Noise added to channels 1, 2, 3, and 4 of total i
power 4 dB above strongest jammrer. §
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Figure 31. Simulated data:

1. Number of weights =5

2. No tapped delays )

3. Number of jammers = 3 i

4. Location and power of jammers: {
4

#1 (-36.9°, 6.67 dB)
42 (-11.5°, 3.33 dB)

- #3 (+11.5°, 0 dB)
- 5. Ratio of power of strongest jammer to receiver
] noise power = 40 dB
| 6. Noise added to channels 1, 2, 3, 4, and 5 of
3 total power 4 dB above strongest jammer.
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Internal Fajlure Mode

In the inte-wal failure mode, processor Pij outputs anly constants.
This case is similar to the external failure mode where input 3 is constant.

Consider first the case where the output of Pi is identically zero. Outputs

N

1 to j-1 remain unaffected. As in the external case, all the wkj's and
outputs of ij for k>1 are zero; so, wjj is zero, and the rest of the array
(rows J to n-1) operate as though the zero had been input at the very top of
column j, and we have normal n-1 weiqght operation. The reverse flow situtation
is similar, so that if Pij fails by outputtina only zero, it is equivalent to
the external failure situation, where the array operates correctly as an n-1l

weight system. When Pij puts out a nonzero constant, incorrect weights are

calculated, as with the external failure mode.
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3.3 GROWTH OF INTERMEDIATE RESULTS

In this section, we derive probabilistic bounds on the growth of
intermediate results during the computations.

We first consider the algorithm without square roots and usina block
averaging. We further subdivide the case into the situation where 1) the actual
covariance matrix M is known (Figure 4a) and 2) where only samples are known

(Figure 5a). When M is known, we have the following bounds on the Z}(k)'s:

- 'i .. 32 .
Amin < Zk(k) <m .. k>i; these bounds are sharp (32a)
i s
|Zj(k)|< 2 - m .5 sharp within a factor of 4 (32b)
IZk(k)l < ; sharp within a factor of 2 (32¢)
J = "max’
- Mmax |
woil < - sharp within a factor of 2,  (32d)
377N Min
vihere
Mmax = m?%lmijl (M ={mij}) i
LN
Anin = smallest eigenvalue of M, and
Amax largest eigenvalue of M
The value moax can be boundéd simply by using the number of bits and
normalization used for each sample,and the number of samples used. If the largest
sample value is X {in absolute value), and S samples are used, Moax < SX2. Note
o~ that the sample matrix is S times as large as the true matrix (S = number of
i' ] samples); because we do not divide the inner products, we calculate by S. The L
{
‘ max used here is the maximum possiblie entry of the sample matrix and is S
times as large as the maximum possible entry of the actual matrix.

81

—
e




Figure 32 plots the number of bits required to represent 53 (Xi2 where
|X| <127 (8-bit 2's complement representation). This p]oE:;uts an upper
bound on the number of bits required to represent inner products. The simplest
a priori bound on Amax 1S nem .. 5 once the matrix is computed, the norms I}Ml!],
[IM}]_> and tr (M) (trace M) (see Isaacson and Keller [1966]*)also provide
upper bounds to Amax' A Tower bound for Anin is provided by the level of
receiver noise. Typically, ADC's (analog-to-digital converters, used to digi-
tize the voltage inputs) are adjusted so that the receiver noise causes the
least significant bit of the converted signal to be random; the receiver
noise is therefore close to SZ’ZtXZ, where t is the number of bits used in
the ADC (this approximatigﬂ_TiX be off by a system-dependent factor close to
. Thus wgl < sx2/s27282 = ot

When using samples to compute the wij's, we use the statistical inter-
pretation of the receiver inputs being complex Gaussian random variables
with zero mean and covariance matrix M. The intermediate quantities Z'}(k)
are then also Gaussian random variables with zero means and computable
variances. The quantity wij has a complicated distribution, but for many
samples we can approximate it by a Gaussian distribution, and ﬁij is similarly
very close to a X2 variable. The quotient of the two quantities,
wij = &ij/;ij’ also has a complicated distribution, and for this analysis we
replace it by its expected value. The results are as follows:

Zy(k) is a Gaussian rardom variable with zero means and variance

var[Zg(k)] = Z}(j), where Z}(j) is computed as though the actual

*
E. Isaacson and H. B. Keller, Analysis of Mumerical Methods,

New York, John Wiley & Sons, Inc., 1966.
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sample covariance matrix were being passed through. Thus

!
|
|
i

'q
Mnin <varfZ (k)] <m

i . (32).
ax® Using the results of Eq. (32)

2. Wij is approximately Gaussian with mean E(Wij) = Z}(i) (again

as though the actual matrix were being passed);

~ . ~ 2 _
S0 IE(wij)} <m __, and variance var(wij) < 2em /S (S = number

max
of samples).
3. ﬁij is approximately X2 with S degrees of freedom, a mean of
= __'i._ = .
E(wij) = Zﬁ(1), so IE(wij)I <M., and variance
x .2
var(wij) S-Z'mmax/s'
Thus, it is a simple matter to calculate the probability of overflow
of the Z }(k)'s as a function of the number of bits, b, used to represent the

z }(k)'s in fixed point (where N(0,1) is a standard normal random variable):
s b
Probability of overflow < P(IN(0,1)|_32 //mmax)

If we let C=1b - 1092¢mmax = pnumber of extra bits used beyond those needed

to represent nﬁmax, we can make the following table:

c | o | 1 | 2 | 3
Probability of -3 213
overflow <31.8% | <4.55% | <6.34x10 "% | <1.24x10 "%

We see that as C increases, the chances for overflow become negligible quickly.
Similarly, if C is the number of extra bits beyond those needed to

represent m_. then the probability of overflow when representing Qij is

x’

Probability of overflow < PLIN(0,1)| > v§72(2C-1)1 .

The following table evaluates the above function for various values of C and

S.
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c
S 1 2 3
1 48.0% 3.6% 7.42x107°%
2 31.7% 0.27% 2.58x10” 10
4 15.7% 2.14x1073 -2.x10721
32 6.33x1073% 3.56x10731 107170
400 1.59x10™ %2y -107383y 1072171

Again, the probability of overflow becomes negligible quickly.
If T is the number of extra bits needed beyond those to represent Moax®
then for the probability of overflow when computing iij to be §J0—4, we need

the following number of extra bits.

c|3 2\1

Range of S ‘ 1-3 4-48) 49 -0

This may be derived using [P(w; > 2°n ) = P0G > 2°9)].

s e >
ij 2
Finally, when passing a steering vector through the array, it must be

remembered that if S is an eigenvector of M corresponding to A then

1

min’
W=M'S = (]/Amin)s’ so that quantities on the order of ]/Amin must be
introduced in the computation. These numbers of magnitudes potentially

much larger than those already discussed can be introduced either during
division by <Z:,Z:> at the right of the array or during back substitution.
Thus the unit-vector and transform-space methods might have an advantage over

the reverse flow method because they do not require passing numbers as large




TSy

Maa o o

LA Ay oo

as ]/Amin back through the array. The unit vector method, of course, passes

%

numbers as large as (mmax/xmin)= m?§ lwijl through the array. Still, the
transform space method and unit vector method might be able to use the simpler

fixed-point arithmetic in the triangular array and then only have floating
points in the outboard processors.
The analysis of the method with square roots is very similar to the

above analysis. The Z ;(k)‘s, wij’ and &ii have the same distributions as
i~ N . . . N
before, but the )/\/wii quantity broadcast is new. It is easy to derive its

distribution from that of Qij' In fact, since &11 is x2 with S degrees of
freedom and mean between Amin and Mnax® e have the probability that the most
significant digit of ]//wii is more than C bits to the right of the most

significant bit of 1//mmax is

it = max

which is very small, as can be seen from the last table. Also, the probability

that I/Jﬁgi will need more than C bits more than ]//xmfn is

max

P<1/\/&ﬁ > 2t et >§ p(x§ < 2’2Cs) :

which is also very small for C=1 and $>20 (probability < 2.8x]0'2%).

The results presented in this section are proved in Appendix G.
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3.4 GRAM-SCHMIDT PROCESSING WITH O(n) PROCESSORS

The Gram-Schmidt array with 0(n2) processors can also be implemented |
with only 0(n) processors. This implementation can be performed by collapsing
the array in the vertical, horizontal, or diagonal dimension (Figure 33); i.e.,
letting the work of all processors in a column, in a row, or along a diagonal
be performed by a single processor.

Each processor performs the same calculations as the processors in the
O(nz) array but on multiple data sets. Three main differences between the
three 0(n) implementations are: 1) work is not equally shared by the proces-
sors; 2) they have different internal-memory requirements; and 3) the output
may be routed internally to the same processor or externally to another
processor. A1l of these will be discussed in more detail. The processor

diagram for O(n) processors is shown in Figure 34.

As can be seen in Figure 33 for the case of four inputs, one processor
must perform the work of from one to three processors of the original 0(n2)
implementation. This mismatch is increased as n increases. If W is the amount
of work that one processor in an O(nz) array must perform, then the amount of
work for a processor in an O(n) configuration can range from W to (n-1)W.
Since the total time in a parallel system is determined by the slowest
processor, then, on the average, half of the processors are idle.

The internal memory for each processor must be increased because it
must store all of the information required for the calculations to be per-
formed. This memory increase should, however, be small, mainly the inputs
and internal weights, which amount to approximately 4(n-1) complex words.

In an 0(n2) array, each processor is independent of its position. In

an 0{n) array, however, the processors must be "aware" of the interconnect
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Figure 33. Collapsing an array into O(n) processors. The boxes
represent work performed by a processor.




a. Standard configuration.

T T T 1

b. Alternative configuration for symmetry.

Figure 34, Configuration using 0(n) processors.
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structure so that they will know where to transfer the processor data. The
controller can handle this requirement by specifying the routing and, as
Figure 34 shows, all routing is regular. The routing problem is not serious
and should not prevent consideration of this method.

3.4.1 Advantages and Disadvantages

The obvious disadvantage of O(n) processors is speed. The actual
timing models are developed in Appendix E, but time is a function of many
variables. In a block average system, most of the time is spent calculating
the internal weights; in this case, an 0(n) system is comparable to an O(nZ)
system (in actual practice, 0(n) and 0(n2) systems can be equal). The O(nz)
system is advantageous when there are a large number of steering vectors.
The determination of which system to use should be based on the relationship
between the number of samples, S, and the number of steering vectors. K.

Fault tolerance and reliability offer potential advantages and dis-
advantages. The O(n) system can be much more reliable because of fewer parts;
however, because of the increased demand on each processor, faster hardware
operating in critical conditions may be required.

3.4.2 Tradeoffs Between the Three 0{n) Designs

Which system, from Figure 33, should be used in a radar installation
dependé on many factors. We discuss briefly the major tradeoffs for each
array.

Since Section 3.2 showed that if any column of the array became error-
prone or stopped working, the system could still operate, the system in
Figure 33a would be chosen for fault tolerance because one processor
corresponds to one column. In the system in Figure 33b, if the first
processor went bad, the entire system would become ineffective which is also
true of that in Figure 33c.
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Diagonal collapsing, Figure 33c, has the advantage of being able to
implement reverse flow without requiring backward busses. This implementation
is accomplished by transposing the internal weights and using forward flow.
The transposition is simple because each processor contains all the internal
weights for the transposition (Figure 35). This transposition is more dif-
ficult for the other configurations, but reverse-flow busscs are cheaper to

implement for O{n) systems because of fewer processors.
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3.5 PROCESSOR INTERNAL PIPELINE/PARALLELISM

Each processor must compute the inner product of its two inputs in order
to compute the internal weights. Once the internal weight has been computed,
it is applied against the processor inputs to compute the outputs. In this
section we discuss different methods of implementing these computations. Block
averaging is assumed. Complex multiplication is performed with 4 multiplies
and 2 adds. Complex addition is performed with 2 adds.

3.5.1 Compute Inner Product

The mathematical formula for calculating the numerator to determine the
weights is

*

S
xy
i=

where X and Y are input samples and S is the number of samples. Typically
S > 2n, where n is the number of adaptive weights. The primitive operations
consist of muitiply and add/sub. Llet the time per operation be t. Input time
is assumed to be 1/2t.

The techniques examined are:

Sequential

Sequential with overlap

Full pipeline

Parallel/2 multipliers

Parallel/4 multipliers

Pipeline/2 parallel multipliers

Pipeline/4 parallel multipliers

Optimal
Table 1 provides a comparison of the numerators computed by the above

implementation techniques.
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Sequential

In this case we have one multiplier and one adder with no overlap:

read X real

read X imaginary
read Y real

read Y imaginary
multiply Xp YR

multiply XI YI

add

add add to runmming sum real
multiply XR YI

multiply XI YR

add

add add to running sum imaginary

Number of multipliers: 1
Number of adders: 1

Time for 5 samples: 10 St
Time between samples: 10 t

Sequential with Overlap

This is a slight modification of the sequential method, but the adder

and multiplier are separate functional units, which enables both to be used simul-

taneously:
read X real add X;Y, + X,Y, from previous sample
A I'R R'I
read X imaginary
read Y real add to running sum imaginary

read Y imaginary
multiply X Yp

multiply XI YI
multiply XR YI add XRYR + XIYI
multiply XI YR add to running sum real

Number of multipliers: 1
Number of adders: 1

Time for S samples: (65 +2)t
Time between samples: 6t

s -



Full Pipeline

This method is similar to sequential, except that each stage is implemented
so that multiple data streams can be executed simultaneously. We must also change
the 1/0 either by transferring 2 words in parallel on each bus or making the
bus operate at time 1/2t. We chose the latter fbr this analysis.

read X real

read X imaginary
read Y real

read Y imaginary
multiply XR YR

multiply XI Y1
add
add
multiply Xp ¥;
multiply XI VR
add
add

No. of multipliers:. 4

No. of adders: 4

Time for S samples: 10t + (S-1)t
Time between samples: t

Parallel/2 Multipliers

Since complex multiply can be done in parallel, we connect two multipliers

in parallel:

read XR
read XI
read YR
read YI

multiply

add

add

multiply

add

add

No. of multipliers: 2
No. of adders: 1

Time for S samples: 8St
Time between samples: 8t




Parallel/4 Multipliers

The next modification is to implement a 4-word-wide multiplier and a
2-word-wide adder.

read XR
read XI
read YR ’ f
read YI i

multiply
add
multiply
add
add

No. of multipliers: 4
No. of adders: 4

Time for S samples: 7St
Time between samples: 7t

Pipeline/2 Parallel Multipliers

! This is the pipeline method with 2 parallel multipliers at the
multiplier stages:

read XR
read XI
read YR
read YI

multiply L
add
add
>, multiply
add
add

No. of multipliers: 4

No. of adders: 4
- Time for S samples: 8t + (S-1)t
- Time between samples: t

Note that in this case the number of multipliers has not been increased, and

time saved is only 2t, buth with added processor complexity.




Pipeline/4 Parallel Multipliers f

This method has a full complex multiplier (4 multipliers) and complex
adder (2 adders) implemented in paraliel.

read XR
read XI
read YR
read YI
multiply ;
add
add
No. of multipliers: 4
No. of adders: 4
Time for S samples: 5t + (S-1)t
Time between samples: t

For the large additional complexity in the processor, this method is only 5t

faster than full pipelined and 3t faster than the pipeline/2 parallel multi-

plier method.

Optimal
The parallel and pipeline methods explained above can take advantage

of overlap sirmultaneously, as in the sequential method. The minimum system would

use overlap in a full parallel sense. This system would look as follows for E

time slice ti:

read XR(ti) )
read YR(ti)
multiply for t, ,
add for t. ,

add for t; 4
read Xl(ti)

read YI(ti)

No. of multipliers: 4
No. of adders: 4




L2

Time for S samples: 4t + (S-1)t
Time between samples: t

The time for S samples is only a savings of t over the previous method.
A graphical comparison of the times required by all the above methods
versus the number of samples is given in Figure 36.

3.5.2 Calculate Weights

In Section 3.5.1 we discuss the calculation of the numerator to
determine the weights. We now discuss the calculation of the denominator

and the division,
N )
The demominator is calculated using the formula ). X*X. Since X
i=1

times its conjugate is a real number, only the real part needs to be computed.

This calculation can be performed either in parallel with the computation of
the numerator or in sequential order. We have the following table for
parallel computation (Table 2). The effective rate shown in Table 1 is

not always attained. If the denominator calculation is carried out in
parallel with the numerator calculation by separate processors, then the
sampling rate will be governed by the slowest of the two processes because
the data will be placed on the bus once for all processors. In the case of
the sequential processing we have a time between samples of 10t and 5t for
the denominator and numerator calculations, respectively. The actual

ystem time between samples will therefore be 10t. Because of this dependency
on the numerator calculation, we can use the same processor to compute the
denominator without serious time penalties. If the denominator is calculated
sequentially in the same processor as the numerator, time t can be saved on

inputting the value X.
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The division can be performed by reciprocal calculation and broadcasting

the value in the horizontal direction. Assuming no overlap, the time to

. compute the reciprocal is the time required to perform one table lookup and

two iterations of Newton-Raphson (see Appendix D). The program to find 1/C

would be as follows:

Table lookup X1 estimate
Multiply CX.|
Sub 2-CX1
Multiply (2-CX])X] X, new estimate
Multiply CXZ
Sub 2-CX2
Multiply (2-CX2)X2 Xy = 1/C
Time = 7t

To broadcast the value and multiply by the reciprocal in each processor
requires the following code in each processor:

Read reciprocal
Multiply

Time = 2t

3.5.3 Apply Weight to Input Data

The formula to apply weights, w, is output = X - WY, This is the same
form as the inner-product calculation, which can be expressed as
sum = sum + XY
Because of this similarity the programs are similar, as shown by the sequential
method:

read XR
read

read YR
read YI

102




)

multiply NRYR

multiply NIYI

sub

multiply wRYI
multiply NIYR

add

sub XI - (WRYI + WIYR)
out X

R
out XI

Assuming output takes time 1/2t, all of the previous formulas are
applicable if a step of t is added; i.e., 8t + (S-1)t becomes

8t + (S-1)t + t = 9t + (S-1])t.
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3.6 DESIGN ALTERNATIVES AND TRADEOFFS

This section summarizes the variety of system configurations described
in detail in the first part of this report (Sections 2.6 and 3.1 through 3.5),
and indicates how various radar engineering considerations might influence the
choice of configuration. Choosing the best configuration is a complicated
task and depends heavily on the details of a given radar system; therefore,
we only summarize some of the tradeoffs. In parti;ular. we conclude that
while a universal element may exist, it might be far from optimal for any
individual system, since it would have to be designed for all possible worst-
case situations, and hence be very expensive, large, and power-consuming.

The different design alternatives are summarized in Table 3. (For
more details, see the indicated sections.)

The unit vector method requires simpler hardware than the reverse flow

method, but is slower, solving m n x n systems in time O(mn) instead of O(m+n).

The transform space method requires the simplest hardware, but every sample
from which filter functions are to be computed must be passed through the
array, which means there can be fewer filter function evaluations per unit
time than with the other two methods.

The different means of calculating the weights not only require dif-
ferent amounts of hardware (most for window averaging, least for cascaded
block) but have different statistical properties, requiring different numbers
of samples to converge or update old estimates, and with different lag times.

The higher performance desired, or the smaller probability of overflow
desired, the more bits are needed; and depending on the basic implementation

chosen, it may be possible to have fewer bits in one part of the processor
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1) Basic Implementation (See Section 2.6)

‘i TABLE 3. DESIGN ALTERNATIVES
1

3

1

a) Unit Vector Method
b} Reverse Flow Method

c) Transform Space Method

. 2) How to Compute Inner Products (See Section 3.1)

a) Block Averaging

3 b) Cascaded Block Averaging
c) Exponential Averaging

d) Window Averaging

e) Number of Samples

3) Arithmetic Used (See Section 3.3)
a) Fixed, Floating Point, Block Floating Point
b) Number of Bits

c) With or Without Square Roots

4) n Versus n2 Processor Implementation (See Section 3.4)
. a) Horizontal, Vertical or Diagonal Collapsing

b) Unit Vector, Reverse Flow, or Transform Space Method

5) How to Implement Each Individual Processor (See Section 3.5)

.

e

105




e o e At At cgind
—— -

-~

- —

-

than another, and even have different kinds of arithmetic (fixed versus
floating point) in different parts of the processor.

The choice between n and n’ processors depends on the speed desired and
cost considerations. The different O0(n) implementations have different fault-
tolerance properties, require processors of differing comyplexities, and
differ in how compatible they are with the three basic implementations.

How to implement each individual processor also depends on the speed
required and cost 1imits, and is certainly dependent on the number of bits
and type of arithmetic chosen.

Some of the most important radar engineering factors affecting the
choice of system configuration are given in Table 4. We discuss how they
affect the choice, but remind the reader that the list is not meant to be
exhaustive, nor is there necessarily a single-best configuration for all
operating modes of a given radar system.

TABLE 4. RADAR ENGINFERING CONSIDERATIONS AFFECTING CHOICE
OF SYSTEM CONFIGURATION

1) Number of Heights

2) Sampling Rate

3) Electronic Versus Mechanical Scan
4) Operating Modes

5) Size of a PRI; Amount of Dead Time
6) Fully Adaptive Versus SLC

7) Number of Bits in the ADC

8) Amount of Clutter

9) Performance Required (in Terms of SNR Achieved)
10) Cost Requirements
11) Reliability Requirements

12) Environment
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How fast the array must process depends on the number of weights,
sampling rate, type of scanning used, system mode, and the amount of dead
time. A higher sampling rate requires either a faster array or downsampling.
If the sampling rate is slow enough, the transform space method might be
sufficiently fast. If there are many steering signals for a given covariance
matrix (e.g., electronic scan), then reverse flow might be preferable to the
unit vector method. If there is a small sampling window and large amount of
dead time in each PRI, simple block averaging, with its long startup, might
be sufficient instead of a more expensive implementation 1ike window averaging.

2 might

If overall speed requirements are low, n processors instead of n
suffice.

If the system is a SLC instead of fully adaptive, some of the arith-
metic can be simplified.

More bits on the ADC méans more expensive hardware to retain accuracy.
If there is so much clutter in the system that there are not enough weights

to adapt to it, then more than the usual 2n samples may be required to get

good performance. In general, the higher performance desired, the more bits |
of accuracy and the more samples required.

The many design alternatives discussed have widely varying costs (n
versus n2 processors, and number of bits carried for example), so there are
many speed/accuracy/performance versus cost tradeoffs.

The different designs have different fault-tolerance properties, which
may also vary with the type of fabrication techniques used.

The radar environment will influence the design greatly. A land-based

system with large amounts of power, cooling, and spare parts available will
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certainly have less stringent packaging, power, and reliability constraints
than one that is used in the field.

The dimension of the design space can be reduced for problems of
interest so that a universal adaptive algorithm (UAA) element does exist. One
such breakdown is shown in Table 5. For this radar system, the UAA element !
would be near optimal for most configurations. For the 30-weight system,

21 bits are required; for the 50-weight system, 22 bits are required for inner-
. product calculation. But due to MSI and LSI integration sizes, either a 22-bit
or even a 24-bit system would be implemented.

The system designer must decide which subset of all possible adaptive }

systems the processors must support.

TABLE 5. SPECIFIC RADAR DESIGN PARAMETERS

1) Number of Weights - 30 to 50
2) Sampling Rate - 20 MHz
3) Electronic Scan

4) Search and Track Modes

5) Typical Times for Land-Based Surveillance Systems
6) Fully Adaptive

7) 8-Bit 2 Complément Complex ADC

8) Low Center

9) 3 to 8 dB Down from Optimal SNR

10) Low Cost

11) 24-Hour Continuous Duty Every Day

12) Land-Based Stationary Environment Constructed to Support
Processor i

P RNAPEY R 1,




3.7 UNIVERSAL ALGORITHM HARDWARE IMPLEMENTATION

The Gram-Schmidt processor has a very simple interconnect structure
regardless of implementation. The bus structure for the pipelined (O(nz))
configuration is shown in Figure 37. A1l buses have a single source, making
this configuration's the simp]est’interconnect protocol. The recursive
(0(n)) configuration is shown in Figure 38. It has a slightly more com-
plicated interconnect protocol because one interconnect bus has several
sources, which implies that each module must know when it should place its
data on the bus. This bus can be implemented with either open-collector or
tri-state logic. A comparison of the two configurations shows that each
processing element (PE) has the same inputs and outputs; thus, with the
addition of bus-sharing logic, a processor can be made to run in either i
configuration.

The bus interconnects may be either one-half of a complex word wide or

a full complex word wide. The latter provides the potential for a higher

processing rate.

A variation combining the O(nz) and 0(n) configurations may be imple-
mented. This variation is shown in Figure 39 for the five-input case. It
enables the system designer to meet the speed requirements without using more
hardware than is really needed, a good alternative solution for large n when
the O(nz) configuration would contain a prohibitive number of processors.

The processor control is no more difficult than for the 0(n) configuration.

The configuration chosen by the system designer is a function of 1) the i

.

processor speed; 2) the number of degrees of freedom required; and 3) the
required processing rate, which, in general, will be slower than the sampling

rate.
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The processor configuration is governed by the Gram-Schmidt equations,
shown in_Eigure 40. They have been broken down into their real and imaginary
components. The majority of the operations performed are add, subtract, and
multiply. Only one division is required after all the terms have been summed.
The divisor in all processors in a row will be identical. If this process is
moved to a dedicated module in each row, n-2 sets of redundant logic have been
removed from each row. This removal will reduce the amount of logic per PE,
reducing each PE's cost and mean-time-between-failures (MTBF). For a system
with a large number of degrees of freedom, this could result in considerable
savings in system cost and greatly improve the system's MTBF. The control
becomes no more difficult and the bus structure does not change for either
the O(nz) or 0(n) configurations (Figures 41 and 42).

The configuration discussed in the paragraph above is expanded here to
show a possible hardware implementation. Two generic processing elements
are shown. First, the node processing element (NPE) computes all equations
except the divisor equation. This processor is present at all the nodes in
the Gram-Schmidt array. The second processor, the diagonal processing element
(DPE), computes the divisor and its inverse, and then broadcasts the inverse
to the NPEs in its row. There is one DPE for each row of the Gram-Schmidt
array.

A block diagram for a node processing element (NPE) is shown in
Figure 43. This processor does not include the ability to calculate the
divisor. This NPE can perform block and exponential averaging. In addition,
it can operate in either the O(nz) or 0(n) configurations. Because of its

generality, the NPE would not be practical to implement for use in a real
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Block G-S thations

Re(W) = Re() + Re(z!)Re(z}) + 1n(z])1n(z])

In(#) = In(¥) + Re(z})n(z]) - In(z])Re(z])

Vew+ Re(Z::)Re(Z::) + In(z))m(z}) i

. Re(w) = Re(w)(1/W) '. |4

Im(w) = Im(w)(1/W)

Re(Z;+]) - Re(Z;) - [Re(w)RE(Z}) - Im(w)Im(Z}X]
Im(Z}+]) } Im(Z;) . [Re(w)lm(Z}) + Im(w)Re(Z})J

Exponential G-S Equations \

Relw,) = Re(w,_1)s + [Re(z})Re(z]) + m(z)ym(z]ICO/A, O - 51]
m(w,) = Im{w_)S + [Re(Z::)Im(Z;.) - Im(z})Re(z})][(l/Jvn_])u - s)]

%, = ¥S + [Re(zDRe(z]) + m(zDIn(z))]0 - 5)

Re(2;+1) = Re(Z;) - [Re(wn_])Re(Z}) - Im(wn_])lm(zg)]

Im(z;.”) = Im(Z;) - [Re(wn_])lm(z}:) + In(w,_;)Re(2}))

0“

Figure 40. Gram-Schmidt (G-S) equations
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system. The inherent cost advantages of using Gram-Schmidt would be can-

celled out.
The arithmetic operations performed within the NPE shown are serial in

nature. The processing speed of the NPE could be increased by adding parallel

—————

computation abilities to the processing element. This parallelism could be

expanded to the point where every equation is implemented in parallel hardware.

ol Dua

Some middle ground between these two extremes, one that meets the processor
. speed requirements, will usually be chosen.

The block diagram for the diagonal processing element (DPE) that com-
putes the common divisor is shown in Figure 44. This processor will operate
in the same modes as the NPE and would not be practical to implement because
of its generality. Examination of the block diagram reveals no-functional

block representing division. This block is unnecessary because of the

following eguation to calculate the inverse of a number:

O
n

2 - ABn

B =B

n n-]c ?

where
A is the value whose inverse is to be found,
B is the inverse, and
C is the correction factor to the inverse.
This equation is computed recursively, approximately doubling the

accuracy of the inverse on each iteration. The first value of the inverse is
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' Figure 44, Block diagram for diagonal processing element (DPE).
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a coarse value found in a lookup table.
the basis for the Gram-Schmidt processor.

depend on the system requirements.
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4. CONCLUSIONS

We have studied in detail the Gram-Schmidt orthogonalization technique
and modular architecture for its implementation. The analysis and simulations
show that for blocked average Gram-Schmidt, the Gram-Schmidt system is iden-
tical in performance to sample covariance matrix techniques, in particular,
Cholesky decomposition. This result shows that a universal adaptive algorithm
does exist with a modular architecture since the Cholesky method is universal.

Also, because the architecture is tailored to the Gram-Schmidt algorithm,
each processor performs simple operations of the form z = x + Ay. The
complexity of each processor is Tow, so that high throughput paths can be
achieved.

Figure 45 shows the timing curves for different Gram-Schmidt implemen-
tations. Figure 46 shows a banded region for Gram-Schmidt compared against
the timing curves determined under a previous RADC contract [Liles et al. 1978].*
As can be seen from these figures, systems capable of real-time operation are
feasible.

Table 6 shows a summary of the conclusions of this study. We have
already discussed the first conclusion, the existence of a good universal
adaptive algorithm (UAA) which uses a minimum number of samples and has a
modular architecture,

The importance of the second conclusion is that while a UAA may exist,
it would have to be large, expensive, and power-hungry to satisfy the perfor-
mance requirements of all possible radar systems. For example, a land-based

T system with 200 weights and a 20-mHz sampling rate, a stable, air-conditioned

*
W. C. Liles, J. W. Demmel, J. D. Mallett, I. S. Reed, and L. E. Brennan,
Multidomain Algorithm Evaluation, 2 volumes, TSC-PD-B525-1, Final Report on

RADC Contract F30603-76-C-0319, Technology Service Corporation, Santa Monica,
California, January 1978.
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TABLE 6. CONCLUSIONS

1. Universal adaptive algorithm with modular architecture exists.

2. Universal adaptive algorithm implementation for subset of all
. adaptive space exists.

Fast implementations are possible (Figure 45).
Processors are simple.

Processors can be improved as hardware advances are made.

A o W

The processor array can be designed to have good fault-
tolerance properties.

7. Possible to get a priori probability bounds on growth of
intermediate results.
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environment with ample space puts far different requirements on a UAA than

a 5-weight system small, cool, and 1light enough to carry on someone's back.

But given a reasonably uniform subset of system requirements, a UAA does exist
for that subset. A subset of interest is ground-based, permanent installations,
30 to 100 weights, high reliability, and adequate power supply. As advances

in digital electronics occur, the size of subset areas increases until a
universal implementation does exist. |

One must remember that the algorithm, the processor interconnect
structure, and the general processor design are all universal. The only
thing which can change is partiéu]ar implementations (number of bits, etc.)
of the processor.

The third conclusion dealing with speed has been discussed above and
is demonstrated by Figures 45 and 46.

The fourth conclusion deals with the complexity of a processor. Each
processor is very simple as shown in Sections 2 and 3.5. Because of this
simplicity and the advances of VLSI, shortly a processor on a chip will be
possible. Since the processor functions are well specified, as new hardware
becomes available, processors using the new components can be intermixed with
other processors without system degradation. This intermixing is due to
functional replacement on a processor level (conclusion 5).

Conclusion 6 deals with fault tolerance of the system. The Gram-
Schmidt array is no more susceptible to noise caused by misaligned or broken
converters, receivers, antennas, than any other technique. This was an
unexpected, but welcome, conclusion, since Gram-Schmidt implementations have
been shown to be prone to noise on digital computers. But due to our imple-

mentation of Gram-Schmidt and the nature of radar signals, the noise problem




is not a concern. Also, if any column of the array becomes bad, the system
k loses one degree of freedom and remains operative--a condition known as
graceful degradation.

Conclusion 7 was the most difficult to arrive at, and more work should
be performed to sharpen the results. Conclusion 7 states that a priori
probability tounds on the internal Gram-Schmidt weights and interprocessor
communication can be determined. These bounds are used to determine the number
of bits used at different parts of the processing system, and what_kind of
arithmetic (fixed point or floating point) needs to be performed in order to
avoid overflow/underflow and bound effects of roundoff error. In Section 3.3
we discuss in more detail the formulation of these bounds and actual number of

bits.

.I

126

R oM P WS AT RT wewr e e - o - : ——- - — -

DRSS L St o - -



5. RECOMMENDATIONS ]

Given the results of this study, we feel confident that the modular
approach has benefits for the U.S. Air Force in the following areas: 1) logistics,
2) maintainability, 3) ease on new system design, and 4) low life cycle cost.

We believe that a Gram-Schmidt system of O(n) processors should be
designed for high-speed updating of weights. The processor should be designed
to be integrated into a 30- to 100-weight system. This system would demonstrate
proof of concept and would serve as a test bed for further research. The
processor designed for an 0(n) configuration can also be used to study 0(n2)
array architectures; the inverse is not true. Thus, one processor can be
used to study both possible configurations.

The processor should accumulate internally at least 24 bits (preferably

32) and transmit to other processors 16 bits. The internal memory for 1 & Q f

inputs should be at least 512 complex words. ?

A

e
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Appendix A

PERFORMANCE OF THE SAMPLE COVARIANCE MATRIX
ALGORITHM FOR ADAPTIVE ARRAYS

A.1 INTRODUCTION

When an adaptive array is implemented digitally, the sample covariance

matrix algorithm provides a direct method of computing the adaptive weights
and rapid convergence independent of the eigenvalues of the covariance
matrix. Previous analyses of this a]gorithm[]] have assumed that the
weights are computed using one set of array element outputs and these
weights are applied to later array outputs. This report considers the

case where the adaptive weights are tested against the same set of data
used in the weight computation.

For many applications, the multiple channel sidelobe canceller is
the preferred adaptive configuration. It can be shown that the sidelobe
canceller is a special case of the more general adaptive array.[z] In
the next section it is shown that the general adaptive array problem can be
transformed to an equivalent sidelobe canceller problem, a form which is
more convenient for some ana]yse;. It is also shown that the array per-
formance is independent of this tran;formation, and that the effective
weights, output S/N, etc., can be computed in any convenient coordinate
system provided the transformation of coordinates is non-singular.
~ T'T 1. S. Reed, J. D. Mallett, and L. E. Brennan, “Rapid Convergence
Rate in Adaptive Arrays,” IEEE Trans. on Aerospace and Electronic Systems,
Vol. AES-10, No. 6, November 1974, pp. 853-863.

[2]. 5. P. Applebaum, "Adaptive Arrays," IEEE Trans. on Antennas and
Propagation, Vol. AP-24, No. 5, September 1976, pp. 585-598. ___
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A..  COORDINATE TRANSFORMATIONS

Let X denote the column vector of array element outputs,
XT = (x ,xz,...,xN), and S, denote the corresponding signal vector. The

noise covariance matrix of the array outputs is

M= E X xt, (A-1)

where Mx is a NxN Hermitian matrix for an N element array, E denotes the
expectation, T the complex transpose, and all noise components (but no
signal) are included in Mx'

The weights which maximize the S/N ratio are

X (A-3)

te 2
(W, S.) +
I e SR
re—g—2- =5 MS (A-4)
W MW

Let T denote any non-singular transformation, and

Y=TX (A-5)
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In the new coordinate system,

- L t
M, = E Y Y =TMT (A-6)
= A-7
S, TS, (A-7)
= -1 (A-8)
Wy, = M S,

Combining Eqs. (A-5) through (A-8),

= (Th-1 _
Wy = (T W, (A-9) |
!
and |
T + {
7 = = A-
Z wy Y =W X (A-10) P
i.e., the output of the array is unchanged by the transformation. !

The sample covariance matrix in X coordinates is

v T A-
(S PRI (A-11) |
k"] |
where Xk denotes the kth independent sample of array element outputs and K
b is the number of samples in the estimator of Mx' The weights based on a
} ' sample covariance matrix are
s -
- W =M S, (A-12)
_: Replacing Mx and My with the corresponding esimators, H» and My, and fol-
O | Towing the analysis of the preceding paragraph, it can easily be shown
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the array output with weights based on a sample covariance matrix is also
independent of the transformation T. Hence, the analysis of adaptive array
performance, including the sample covariance matrix algorithm, can be per-
formed in any convenient coordinate system provided the required trans-

formation is non-singular,

. A.3 PROBABILITY DISTRIBUTION OF S/N

For any arbitrary adaptive array, the input vector X can be trans-
formed to a new set of coordinates in which the signal is present in only

one component and the noise covariance matrix is diagonal. First, let

-1/2

V=~ X to diagonalize the noise covariance matrix. Then,

1/2 1,7

= - oy -
M =E Mx X X M =1
(A-13)
- m-1/2
SV MX SX
Next, rotate the coordinates by a unitary transformation U so that the S

vector is non-zero only in the first component, and normalize its amplitude

to unity
_ et -1 -1/2
Y = (Sx MX Sx) uv
(A-14)
o - r-]/zu M"]/z X
0 X
.
\
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where o js the S/N ratio with optimum weights, given by (A-4). Then,

S R V7 A2 b
M= vy UMM M THS

Y= T N e ! (A-15)

and

s, = e /2y /s

v = "o (A-16)

X

OO —

Note that the output S/N ratio in the new coordinate system is

t -1 - -1 A-17
- sy My sy (My)]] ( )

i.e., the (1,1) element of the matrix M;,].

The sample covariance matrix algorithm can be analyzed conveniently
. in the new coordinate system. The subscript y will be dropped in the

following equations. Again, the sample covariance matrix is

o] + -
M=z Z; Yo, (A-18)
k=1
1
* The weights based on this estimator are
}
P W=n's (A-19)
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When these weights are tested on a different set of samples than those

used in estimating W, the S/N ratio " is

ry = - (A~20)
The ratio of g to the S/N with optimum weights is

T 2

1 (s" M

= S)
¥

m! syt et mom

r
A o (s

) (A-21)

The probability density of this variable p| was derived in [1].

In some cases of interest, the weights may be applied to the same

set of samples used in computing W. In this case, the output S/N ratio is
t -1 o1

The analysis of [1] can be extended to obtain an expression for the pro-
bability density of r.
(1,3]

The sample covariance matrix has a complex Wishart distribution

i.e.,

P(A) = l%%;;ﬂ exp {ftr(M'] A)} (A-23)

[3] N. R. Goodman, "Statistical Analysis Based on a Certain Multi-
variate Complex, Gaussian Distribution," Ann. Math. Stat., Vol. 34,
March 1963, pp. 152-177.




=T

where IAI denotes the determinant of A, N is the number of elements in the

array, tr denotes the trace of the matrix, and A = K M. The constant 1(M)
is a function of K, N, and the covariance matrix M. In Eq. (A-23), P(A)

is the joint probability density of the elements of A, and is restricted

to those matrices A which are positive definite. It assumes that the

underlying noise process is complex Gaussian.
Consider the following representation of the matrix A.

A A

A = , (A-24)
Aoy Az

where A]] is a scalar, A,y is 2 (N-1)x1 column vector equal to ATZ’ and

A22 is a (N-1)x(N-1) matrix. As in [1], A can be factored as follows

+ _ -1
T A\ [AP1A2 Aoz Apye O
A= 1 ] (A—25)
0 Ay Aop Ay o1
and
1
AT =1A1A12 Agp Par | 1Rzl (A-26)
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Let

) ALt

D1y = Ayy-Ayz Azz Ay

Dy, = Ay, = A (A-27)
12 = M2 = Ay

Dy = Ao

The Jacobian of the transfqrmation from (A]], A]Z’ A22) to (011, D]Z’ 022)

is one, soO

KN K-N 1 RN
P(D195012:022) = Oyy 10501 ™" 1wy exp{ =(Dyq#Dyp Dpp Dy, * tr D22)”0}

= P(D)y P(Dy,50p7) » (A-28)
where

KN
P(01) = ¢ 07N exedr oo b (A-29)

and Cl is a constant.

Representing A"' in the same form as Eq. (A-24),

11 12
Al (AR , (A-30)
A21 A22
it can easily be shown that An = ﬁl— . Since A =K ﬁ and, from Eq. (A-22)

1
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the output S/N ratio is

S I | I A-31
r= (M), = KA = 5;; ( )
Let p = r/r0 = kD From Eq. (A-29)
o 1N
K-N+1
C, K
2 .

Wormalizing this distribution, C2 = TK:%TT" and

KK-N+]

K
o) (k-R)1 oFP2 &P -] (A-33)

This is the probability density function for the normalized output S/N
ratio, p = r/ro, when the same samples are used in ﬂ for computing the
weights and for testing the weights.

From Eq. (A-33),

= K
= XN (A-34)

The mean output S/N ratio for the same samples is greater than with

optimum weights, W = M1 s, That is, p > 1.
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: Appendix B
F DERIVATION OF NOISE SENSITIVITY RESULTS

This appendix derives the results used in Section 3.2 We know [Brennan

and Reed 1973] that the SNR of an adaptive system with true covariance matrix

- e  we g oey
.

M, steering signal S, and weights W is

. SR, = Is*W|Z/W - mi . (B-1)

WO Ty e e v

When W = Wypp = M']S, we get

S = s*(M71s) = se(m MM Ys = (M Ts)mMls) = W

SO

]

S

SNRypr = | S*H|2/WAMA = SHW = WAMW = S*M™

OPT

When W = NOPT + E, where E is an error vector, we get

= 2
SNR,, = IS*(NOPT + E)| /Ugpy + EVM(Hgpr + E)

[I5*Mgpy1Z + 2Re(S*Mopr) (FFE) + |s*E|?]

3 (NOPT*MNOPT + 2ReWppp*ME + E*ME)

(SNRSPT + 2SNRoprRe(S*E) + |s*E|2)/(SNROPT + 2ReS*E + E*ME)

»

2
= SNRgpr + (|$*E|® - SNROPTE*ME)/N*MN
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1]

[0 - (E*ME/MMA)) SR, + (EXME/WMN) (| S¥E| 2/E*ME)

[V - (E*ME/W*MA)ISNRopr + (EXME/W*MW)SNR

= SNROPT + (E*S*SE - SNROPTE*ME)/N*MN

SNRop -e*[M - (S*S/SNROPT)]E * (SNRypr/W*MH) . (B-2)

Since M is positive definite Hermitian, S*S is positive semidefinite Hermitian

of rank 1, and

x*[M - (S*S/SNRjpp)]x = x*Mx/SNRqpp + [SNRyop = (x*S*Sx/x*Mx)]

(x*Mx/SNROPT)(SNROPT - SNRX)‘z 0 R

we have M - (S*S/SNROPT) is positive semidefinite Hermitian of rank n-1

1

(W =M"S is in the null space) and

0 < A[M - (S*S/SNRppr)) <A (M) - A . S¥S =2 (M)

maX max

Also
W*MW

(Wopy * EV*M(Wgpy + E) = Woor*MWoor + 2ReMop *ME + E + ME

T

| v

SNRgpy - 21 15|

SO

2
SRgpr/MHMH < 1+ (2[15]| « [EI1/SMRopr) + OCIIEF[Z) = 1+ Ol [E[]).
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When W = W + E, W not necessarily optimal, we get

SNRy, [Is*W|% + 2Re(S*W) (S¥E) + |S*E|%]/(W*MW + ZReW*ME + E*ME)

1]

(assuming |2ReW*ME - E*ME| < 1 for small E)

[15*W|% + 2Re(W*SS*E) + [S*E|Z] + (1/W*MH)

o [1 - (2ReW*ME/W*MW) - (E*ME/W*MW) + 4ReZ(W*ME)/(W*MW)2 + 0(IIE|13)]

|S*W|2/WMH + (|S*H]2/WAMI) + (-2ReW*ME/W*MW) + 2ReW*SS*E/W<MW

+ (| S*W|2/WMN) (-E*ME/WAMM) +  (S*W)2/WAMU - [4ReZWAME/ (W*MK) 2]

- [4Re(W*SS*E)Re (WME)/ (W*MW)2] + |S*E|2/w*Mu + o(||E||°)

SNR,, + SNR, (-2/W*MH) « Re[W*(M - SS*/SNR,)E]

+ (SNR,/W*MW) * { (E*SS*E)(1/SNR,) - E*ME

+ OReW*ME/ (W*MW) - [ReW*ME - Re(w*ss*E)/SNRN]} + o(] €1

SNR,, - 2(SNR,/W*MH) « Re{[(M - $S*/SNR, JW]*E}
+ SNR/WAMW  Re{[4(KeW*ME/W*MA)W* - EX](M - SS*/SNR )E}

NAHIN . (B-3)

Now we turn to the problem of inverting M = M + A, where M is a covariance

matrix and Akl = {p if k=2=j, 0 otherwise}. We may write
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s,

LTI S L ol TV L Vely I S B
=)yt (B-4)
Since AM™' is all zeroes except for row j, which is the jth row of M
multiplied by p, we can write
0 !
PRLE VRl O p ! .m" +jth rOﬁ) (B-5)
L 0
where M = {mij} and M) = tm'J}. The inverse of the expression in parentheses
is given simply by
-1
i % g i % g
I+pmd' . .. .m =1 "“Jl‘iij N A (B-6)
0 1+ om 0
so that M1 is
0 .
L VAL VL (N N N % ) . | . (B-7)
1+ pmd? 0

This formula is a special case of the Sherman-Morrison formula [Dahlquist and
Bjsrck 1974, p. 1611."

The new weights W = M's are given by

0

W= W+ —2 N w. <row j (B-8)
1+ pmJJ J

*G. Dahlquist and A. Bjork, Numerical Methods (trans. N. Anderson),
Englewood Cliffs, New Jersey, Prentice Hall, 1974.
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where W = {wj} = M']S are the original weights. Thus the new weights equal
the old weights plus the jth column of M'] times [-p/(1 + omjj)]. We can
express S*M'ls, the optimal SNR of the system with noise, in terms of the old

optimal SNR = S*M™'S, using Eq. (B-8):

0
SNR = s*M'S = s = e+ ST . [opf1 + omId)Y w
NEWOPT P 5
0
0
- 3 Ji
= SNROLDOPT + W* WJ- (-D/(' + pm )]
0
) .
= SNRoy pgpy - [olw; 1%/ (1 + om?d)] (B-9)

If the covariance matrix is still M, but weights W = M']S are used, we may
compute the new SNR using E = W - W and Eq. (B-2). We need to know

*

0 0
EAME = M'](———lﬁ—Tv) w. || M M"(—-—Jil—rr) W,
T+ omid)| M 1+ omdd /| 13
0 0
01 0 .
) RIWREA

n
Cann
]
‘:Jh
[N
k3
<
=
L
[
]

and
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. -o|w.|
S*E = WAME = w*(__T_E_ﬁ,) wol = —J (B-11)
A B K
O.
and
W*MW = SNROPT + 2ReW6PTME + E*ME
2y, 1233
. plw.|"m
= SNRypp + 20[w|%/(1 + ondd) 4 el (B-12)
J (1 + omIJ)

Then the SNRw is

SNR
SNR oPT

OPT jJ

SNR — —
2 2 2 2
SNROPT - ZQIWJI /(] + OmJJ) te IWJ' mJJ/<] + omJJ)

W

< L% w3370+ ond2 = Bl 700+ oIy iRy ]

o2 lw. [amId (1 + omdd)2
SNR J

]

oPT ~ 2 33
- ) + - pm.. .
SNRypt pleI /(1 + pom¥¥)[2 omJJ/(l + pmJJ)]
w, |2
" |SNRopy - "”%3
m
2 o i o o .
= SMRgpy - 0°|ws] I3/ [SNR o (1 + pm¥?) - o wyl“(2 + om?d)]
2
[w.]
« |SNRypy - —~i33 : (B-13)

By differentiating Eq. (B-13) with respect to p, we can show SNRw is a monotonic

decreasing function of p, and that 1im SNRw = SNROPT - ]wjlz/mJj, the same
o-)‘(x)

lower bound as for Eq. (B-9) .
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Appendix C
EXAMPLE OF USING GRAM-SCHMIDT TO SOLVE A SYSTEM

OF SIMULTANEQUS EQUATIONS

Assume the matrix equation

2 4 6
A=14 12 20
6 20 36J
’-’ﬁ
X = unknown = X,
3
4
b=116
30

The network used is shown below.
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Here, I I,

We will solve for x by decomposing A into the form LDLT. This decomposition

|
|
|

2 is performed by passing each row of the matrix through the network, using the

g

following steps:

Step 1. Pass row 1 of the matrix through the array to calculate the
. first row of weights.

2 4 6 Row 1

tyy ..

t—-__’__

Wiy o= a]2/a]] =4/2 = 2

Wip = ay3/ayy = 6/2 =2

=y =

Step 2. Pass row 2 of matrix through the array to calculate second row
of weights.




Step 3. Pass row 3 of the matrix through the array to calculate d33.

6 20 36

3:[
36 - 3(6) = 18
%

2

18 - 2(8) =2

1 0 0 2 0 0
L={2 1 0 D=1 0 4 0
3 2 1 0 0 2

To solve the system of equations, we have to perform the following steps as

well, because LDLTX = b — x = LT'][D'](L°1bﬂ:

Step 4. y=Lb
Step 5. z = D'1y
Step 6. x =L
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Step 4. Pass b through the array to perform L™ "h

4 16 30

A M \ )

AN AN ¥ =4
l 30 - 3(4) = 18
) N _ g
16 - 2(4) = 8 }qz’ — Y5
18 - 2(8) = 2 = yy =2
Step 5. z = D']y; and since D is diagonal, it is easy to invert.

g b 8 7 -

1/2 0 0 4 2

' =] o 14 o y=|8 2=07y =12

0 0 1/2 2 1

Step 6. x = LT']z, which will be done by the reverse flow method.

We pass z through the network in opposite direction from normal.

The vector x has now been determined.
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We now present a solution to the problem being solved which differs from
the previous solution because it eliminates steps 4 and 5 by using an augmented

from of the matrix (to be explained below).

Solve Ax = b

[246
A=l412 20
| 6 20 36

[ % ]

2 4 6 4
4 12 20 16
6 20 36 30

A augmented

A augmented is simply the A matrix with b added as the last column. The

network also has an added column as shown below.

The steps of the aggmented form of solution are as follows:
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Step 1. Pass row 1 of matrix through array to calculate first row of weights.

2 4 6 4 a
12 _ 4
w = = = = 2
o ayy 2
a
13 _6
2 3 2 w = =_=3
12 a3 2
b
1 4
Wy = =3 = 2
13 ay, 2

) 12

?

12-2(8) = 4 —=

£ 20
B

22 ©

Step 3. Pass row 3 of matrix through array to calculate third row of weights.

R e R
30-2{6) = 18

151




RS, P L AN e

. e

Note that
w]3 =2
Wp3 = 2
w33 =1

These values are the same as z in step 5 of the previous solution. We can

proceed with the reverse flow or unit vector method to determine x.

Step 4. We now show one step of the unit vector method as discussed in
Section 2.6.1. The unit vector method passes a unit vector through the array
and performs the dot product of the array output with the vector z to determine
an element of x.

A column of the array performs a calculation very similar to dot

product and can be used in that manner, as shown below:

By setting I1=0, the column output is the negative of the dot product

n
—
—

of the column weights and the input vector. We now perform the unit vector

method to calculate Xy




1 0 1 (A N L A

tanuts

Ay -_—2i s 22

n-201}) = -2

-3
2 2
-— 22 2 s 2
SRy S ?
VLU !

)=

The array output is 1; therefore, x]=-1 because the last column g

i

output is the negative of the dot product. x]=-1 is the same answer obtained

in the previous solution.

Multiple b's (Multiple Steering Vectors)

This modification consists of adding enaugh extra columns to handle

the additional b vectors. The illustration shows the configuration for 4b

vectors, and a matrix of order 3.

Matrix Iniwt b Ve tor dnoot

———Ae— — f————"——L Tt

I
M
4
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Let N be the matrix dimension. Then N additional processors are
needed for each b vector. For Kb vectors, K*N additional processors are
needed.
To determine x for Ax=b, either reverse flow or unit vector methods
can be used. If the unit vector method is used, the total time is independent
of the number of b vectors. The total time would be derived as follows:
N = dimension of matrix
t = time per array stage

There are N unit vectors and N stages; thus, total time is

Tw = Nt + (N-1)t = (2N-1)t

uv

For the reverse flow method, the time is a function of the number

of b vectors (K). Using the same definitions as above, the total time

T (N-1)t + (K-1)t

} RF
i = (N+K-2)t
1, The reverse flow method is faster for K<N+1 but also requires more
complicated processors.
l
.F .
[»
!
b
.
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Appendix D
RECIPROCAL AND SQUARE-ROOT CALCULATION

Depending on which Gram-Schmidt method is used (LDL* or LL*), either the
reciprocal or the reciprocal of the square root or a real number must be
calculated at each level. These calculations are performed using Newton-
Raphson iteration. Newton-Raphson has the advantage of quadratic conversion
(the number of accurate bits doubles with ecach iteration step) and the
processing can be performed without divisions. The general recursive rela-
tionship is Xi41 = X5 - F(xi)/F'(xi). For reciprocal of A the function

F(x) = (1/x - A). Applying the reciprocal function to the general function

we have the following:

Xiel T % T
; A

i1 T % 7 - -2
-X

H
—
N
'
p=3
>
—ts
~—
x
e

The seed value for Xo is determined by table lookup and is an
approximation of 1/A. Each iteration step doubles the accurate bits.
The square root operation is performed almost identically. The

function F = (1/x2 - A), so the recursive formula becomes

.

{
N 2
; ‘ Xipp = (3= x5 A)xy/2
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The divide by 2 is easy to implement, using a shift operation. The
reciprocal of the square-root operation is slower than the reciprocal operation

due to an extra multiplication and shift.
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Appendix E
TIMING EQUATIONS FOR BLOCK AVERAGE

AND 0(n) PROCESSORS

The processor computation abilities are those listed in Section 3.4.
The 0(n) processors are connected and perform the processing as shown in
Figure E-1. The reason for the processor on the first input is to compute
the first denominator and its reciprocal.

The timing equations developed in Section 2.6 for an 0(n2) array apply
to the O(n) array when one equation is to be solved. When more equations are
to be solved (in a pipeline by the 0(n2) array) the differences in time
between the 0(n) and O(nz) processor implementations become apparent. The
three stages of calculation using the 0{n) array are:

1. Calculate all internal weights.

2. Pass S through the array.

3. Solve for the weight W.

We build up the timing equation in the above order for three implementations:

Sequential

Full pipeline

Optimal

E.1 CALCULATE ALL INTERNAL WEIGHTS

For each implementation method, we have the following steps:
A. Compute numerator and denominator.

B. Compute reciprocal.

C. Multiply by reciprocal.

D. Pass data through array, applying internal weigﬁts.

The timings for these basic steps are:
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Figure E-1. Model used for O(n) timing measurements.
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-n

A B c D

Sequential 10 St 7t 2t 11 St
Full pipeline 10t+(S-1)t 7t 2t 1t+(S-1)t
Optimal 4t+(S-1)t 7t 2t 5t+(S-1)t

We must calculate internal weights at N-1 levels; se the general

timing equation is

T = (N-1)A + (N-1)B + (N-1)C + (N-2)D

The specific timing equations are:

Arbitrary N,S S = 2N
Sequential (21NS+ON-325-9)t (42N2-55N-9)t
Full Pipeline (25N+28N-35-38)t (4N2+22N-38)t
Optimal (2SN+16N-35-20)t (aN%+10N-20)

The only difference between the times for 0(n) processors and O(nz)
processors is that with O(n2) processors, there is overlap between applying
the internal weights calculating the numerator. This overlap can be obtained
with 0(n) processors if the processing power of each processor is doubled.
Another approach is to use twice the number of processors as shown in

Figure E-2. This is still an O(n) processor configuration and the processors

can be identical.

E.2 PASS S THROUGH THE ARRAY

With only O(n) processors, no pipelining can be performed. By design-
ing the processors with recirculating pipelines, we can handle L steering
vectors at a time,where L is the length of the pipeline. For K steering

vectors, [K/L1 passes are required. Another method. is to pass all K vectors
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NEW INTERNAL VEIGHTS
ROUTED BACK TO FIRST ROW

. Figure E-2. 0(n) processor configuration with same speed to
f calculate internal weights as 0(n2) processors
using block averaging.
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through sequentially. In this case, a memory (first-in, first-out (FIFQ)
buffer) of length K-L is needed for recirculating (Figure E-3). If K-L > L,

then additional processing may be disired on the feedback path instead of

simply a FIFO-buffer; this is the model we will use. This model applies only to
full pipeline and optimal implementations. The sequential implementation

does not offer any pipeline possibilities. The timing formulas are:

' Arbitrary N,K K =1

: . Sequential (N-1)11kt 11(N-1)t

f Full Pipeline (N-T)max(K,11)t + (K-1)t  11(N-1)t 4
Optimal (N-T)max(K,5)t + (K-1)t 5(N-1)t |

The maximum function is due to the recirculating buffer. If K is less
than the length of the pipeline, then we use the pipeline length, or else we

must include the recirbu]ating path.

E.3 SOLVE FOR WEIGHTS

We solve for both unit vector and reverse flow methods.

Unit Vector Timings

For the unit vector method, we must pass through K+NK vectors. We can
use the timing formulas just developed for passing K steering vectors by

substituting K+NK for K. These formulas are:

. Arbitrary N, K+NK N> 10
Sequential (N2—1)11Kt (N?;1)11Kt
- Full Pipeline  (N-1)max(K+NK,11)t + (KeNK-1)t  (N2KaNK=1)t
o Optimal (N-1)max (K#NK,5)t + (KeNK-1Tt  (N2K#NK-1)t
/ ’ Since we are interested in large cases, the overall timing formulas

’ now given are with N > 1C: so a recirculating pipeline is used.
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L Forward Pipeline Length

Require
K-L Feedback Stages

Effective Pipeline Length =
Max(K,L)

Figure E-3. Recirculating pipelines.
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Timing Formulas for Complete Process

Arbitrary S,K; N > 10

N > 10, S=2N,K=1
2

Sequential (21SN+1INZK+ON-11K-325-9) ¢ (53N2-55N-20)t
Full Pipeline  (2SN+N2K+NK+28N-35-39)t (5N2+23N-39)t
Optimal (2SN+NZK+NK+16N-35-21 )t (8N2+TTN-21)t

For the special case (N > 10, S=2N,K=1) the above are approximately

two times slower than the O(nz) implementations. As K increases, this

flow for K steering vectors as is the case with O(nz) processors.

This is summarized in Table E-1.

: difference becomes larger due to this N2K term in the above formulas.

The reverse flow timings, in general, are not simply twice the forward

The excep-

tion is when diagonal collapsing is used because then the array is symmetric

The reverse flow timing for horizontal

comparison is the same as forward flow from K steering vectors for vertical

For vertical comparison just interchange horizontal and vertical

We will only derive

TIMINGS FOR THREE 0{n) IMPLEMENTATIONS

Reverse Flow
K Steering Vectors

Pass K Steering .
Vectors Through Array

|
3 Reverse Flow Timings
‘; .
>
from both the input and output ports.
1
L - comparison.
4 in the above sentence.
the timing for vertical collapsing.
TABLE E-1.
Implementation
Vertical
Collapsing
Horizontal
Collapsing
: Diagonal
v Collapsing

NOTE: Times at end

of double header arrows are the same.
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The last processor must operate on (N-1) streams before the other

processors can compute their tasks. After the last finished there are (N-2)
processors waiting for the output,which must be processed in order. A
question which arises is whether to process one steering vector at a time

-1St element. Both

or the ith element from all steering vectors before the i
of these methods have the same throughput rate.
The timing equations for reverse flow only are:

Arbitrary N,K

Sequential (KN-K+N-2)11¢
Full Pipeline (KN-K+11N-12)t
Optimal (KN-K+5N-6)t

The computer timing equations for all three steps are:

Arbitrary N,K,S S=2N,K=1
Sequential (21SN+22NK+20N-22K-325-31) t (42N2-22N-53)t
Full Pipeline [25N+NK+39N-35-51+(N-1)max(K,11)]t  (4NP+45N-62)t
Optimal © [25N+NK+21N-35-27+(N-1)max(K,5)]t (aNZ+21N-32)t

Because of the symmetries between horizontal and vertical collapsing,
the above formulas apply to both.

Comparison of Unit Vector ard Reverse Flow Times

The reverse flow method is faster if the following conditions hold:

N>10
Sequential A1l cases
Full Pipeline NZK+125TIN + (N-1)max(K,11)

Optimal A1l cases
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If we add the restriction that N must be greater than 22, reverse

flow is always superior. This restriction is not unreasonable, since our
effort is directed at large adaptive arrays.
Special Case

As already mentioned an O(n) system can determine the internal weights
as quickly as an O(nz) system if the processors are twice as powerful or
doubled up. The process of applying the transformation to the steering
vector and then using the unit vector or reverse flow method can also be
performed on an O(n) system at the same rate as on an O(nz) system with the
same processor speeds. The metﬁod depends upon the diagonal collapsing
(Figure E-4). In this processor,organization of each row has independent
processors as does each column. Therefore, if only one input vector exists
(one steering vector, K=1) then at each stage no waiting is encountered for
busy processors. The following table specifies the conditions in which

this method is equal in time to an O(nz) array.

Unit Vector Reverse Flow
Sequential Never K=1
Full Pipeline K#NK < 11 K<Mh
Optimal K+NK < 5 K<b

The above table shows that the unit vector method is never equal to
0(N2) array times for N of interest (N > 10). The reverse flow method

rating is independent of N, which is desirable. We also know that with

diagonal collapsing, the reverse flow method can be used with forward fiow.
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Figure E-4. Diagonal collapsing.
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Appendix F

PROCESSING TIMING FOR BLOCK AVERAGE 0(n2) SYSTEM

This appendix determines system throughputs as a function of the
degrees of freedom, N, the number of samples, S, and the number of steering
vectors, K. This process can be divided into three subfunctions:

1. Calculate all internal weights.

2. Pass S through array.

3. Solve for weights, using unit vector or reverse flow method.

We build up the timing equation in the above order for three implementations:

Sequential (worst case)

Full pipeline

Optimal (best case)

We also assume separate processors for denominator calculations.

F.1 CALCULATE ALL_ INTERNAL WEIGHTS

For each implementation method we have the following steps:

A. Compute numerator and denominator.

B. Compute reciprocal.

C. Multiply by reciprocal.

D. Pass data through, applying internal weight.
The last step can be combined with the first step, so that as the internal
weights are applied the outputs are used to calculate the numerator and

denominator of the next row. The timings for these basic steps are:
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A B o D

Sequential 105t 7t 2t st
Full pipeline 10t + (S-1)t 7t 2t 1t + (S-1)t
Optimal 4t + (S-1)t 7t 2t 5t + (S-1)t

For a system of degree N there are N-1 internal weights; so the general

timing formula in terms of stages is:
T=A+ (N-1)B + (N-1)C + (N-2)[DA] ,

where [DA] represents the time to apply the weights and calculate the numerator

in the pipeline. The resultant specific formulas are:

Arbitrary S & N S=2N
Sequential 11SN + 20N - 125 - 9 22N% - 4N - 9
Full pipeline SN +°30N - S - 20 oK% + 28N - 20
Optimal SN+ 17N - S - 13 2N + 15N - 13

F.2 PASS S THROUGH ARRAY

This is the same calculation as applying the internal weights to K input

vectors (remember K is the number of steering vectors). The time formulas are

as follows:
Arbitrary N,K K=1
Sequential (1IN + 11K - 22)t (N - 1)t
Full pipeline (1IN + K - 12)t (1IN - Nt
Optimal (5N + K - 6)t (5N - 5)t
168
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After passing the steering vectors through the array, the resultant
vector must be multiplied by all the reciprocals of the denominators. Since {
these values have already been calculated, only a real-times-complex multiply

must be performed, as follows:

Sequential Full pipeline Optimal
Multiply Multiply " Multiply
Multiply Multiply
Time 2t 2t t
Total
Time (1IN + 11K - 20)t (1IN + K - 10)t (5N + K-5)t

F.3 SOLVE FOR WEIGHTS

We first explore the unit vector (UV) method. This method, as explained

in Section 2.6.1, consists of passing N {or N-1) unit vectors through the

arrays and performing a dot product on the output. This process is similar to
passing S data vectors through the arrays, so the same formula holds. Since
the steering vector (or vectors) will pass through the arrays first, we are
passing a total of K+NK vectors (N unit vectors for each steering vector).

The processing time for dot product is entirely overlapped by the pipeline
nature of the array except for one complex multiply and add at the end. The
delay for this last multiply/add is equivalent to applying the weight for

one input (11t, 11t, and 5t for the three methods discussed).
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Unit Vector Times

Sequential TINK + 22N + 11K - 22
Full pipeline NK+ 1IN + K- 12
Optimal KN+ 5N+ K-#6

Time for the entire processing time can now be determined by adding
these times to the times for passing through the raw data vectors. The

resultant timing formulas are:

Arbitra}y N, S, K K=1, S=2N
Sequential 1SN + TINK + 33N - 125 + 11K - 23 22N% + 20N - 12
Full pipeline SN + NK + 41N - S + K - 31 2% + 4ON - 30
Optimal SN+ KN + 22N - S + K - 19 2N + 21N - 18

Reverse Flow Times

The reverse flow method is exactly the opposite of passing the

steering vectors through the array, so the basic timing formula is:
PASS RAW DATA + 2 * PASS STEERING VECTOR + COMPLEX MULTIPLY ;

The extra complex multiply is'to perform the final calculation of passing

the steering vectors. The timing formulas are:

Arbitrary N, S, K K=1, S=2N
Sequential 1SN + 44N - 125 + 22K - 5] 22N% + 20N - 29
Full pipeline SN + 52N - S + 2K - 42 2N% + 50N - 40
Optimal SN + 27N - S + 2K - 24 N2 + 25N - 22
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Comparison of Reverse Flow and Unit Vector Times

We can compare the timing equations for reverse flow and unit vector
methods to determine which is faster. The results of this comparison are

shown below:

Reverse Flow Faster If
Sequential A1l cases
Full pipeline NK+ 11 > 11N + K
Optimal NK + 6 > 5N + K

As K approaches N the reverse flow method is better. Which method is actually
implemented is determined not only by K and N but also by the timing requirements

of the system to determine the required level of complexity in the processors.




Appendix G

PROOF OF RESULTS ON GROWTH OF INTERMEDIATE RESULTS

We first consider the case of the algorithm without square roots, where
the actual elements of the covariance matrix are passed through the array.
Since the array does nothing more than the Cholesky LDL* decomposition of M,
we will first change notation to show how the Z;(k) correspond to intermediate
values in the Cholesky decomposition, and then with this simpler notation
prove the stated results.

Qur claim is that

Zl(k) = M ;: L Eppdr i<k (G-1a)
K k-1

Zk(k) = My - Z Beeypdt = dy (G-1b)
Zi(k) =m, - 5 2, L. dr i<k (G-1c¢)
) Jjk ey kr~jr

we. = I5(K)/2%K) = 2. ok (6-1d)
kj J k jk

where L = {ij}(unit Tower triangular), D = diag {dj}’ M= {mjk}, and M=LDL*,
The proof is by noting that the array and the Cholesky decomposition perform
the same column operations on M, and that the array recomputes some intermed-
jate values (because no time is lost due to parallelism,and interprocessor
communication is simplified).

We may now show

k-1
k _ _
Mmin 5-Zk(k) = Mk - Eé% ertird” < Mhay (6-2a)
; i-1
i _ . - .
Amin < Zk(k) = Mk Eé%zkrzkrdr < Mmax (i<k) (G-2b)
where Amin = minimum eigenvalue of M and Moax - Mmax lmijl'

N
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We need several well-known facts. moax - max|m..| since our matrix is
i
positive definite Hermitian [Isaacson and Keller 1966]}. The separation
*
theorem [Franklin 1968] states that if M is an nxn positive definite Hermitian

matrix, and if Mm is the mxm matrix consisting of the first m rows and n

columns of M with eigenvalues XT g.Ag < ... g)ﬁ, then the X} satisfy
m m-1 m m-1 _.m . .
A SA T SA) S ees S AL SA, In other words, the m-1 eigenvalues lie

in between, or separate the m eigenvalues of the larger matrix. Also, if
m

m
. m . .
= * = . =, >\.=.n-
M=LDL*, D d1ag(dJ), then det M_ ng ; J=]dJ’ the equality of which
follows from the fact that det M = det D =l7dj and the Cholesky decomposition
of Mm produces the same Eij and di values for i <m. Finally, to prove

Eq. (G-2a}), we write

T g1 9 [ ger gy T det My/det M = R s
SO since
m-1 m
i S Mn ;
;5 m mf; m m n
dm z J=1 )‘J J=1 At )\] 2 >\] : Xmin

The other half of the inequality follows by our noticing that the defining
equation for dk (Eq. (G-1b)) starts with M < Moy and subtracts positive

numbers ‘lkr\zdr (dr > A > 0 since M is positive definite). Eq. (G-2b)

min
. k i
follows from (G-2a) since Anin g_Zk(k) g_Zk(k) Mg Smoo» and the sum for
Zt(k) subtracts more positive terms than the sum for Z;(k). That these

bounds are sharp is obvious by considering any diagonal matrix.

*J. N. Franklin, Matrix Theory, Englewood Cliffs, New Jersey,
Prentice-Hall, 1968.
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Next, we show

Kk
]Zj(k)l M (G-2¢)
i .
|Zj(k)[ 5_2mmax (i<k) . (G-2d)
i ) k-1 = .
et 2, =2, /H; so that d, Pip Zj(k) =Wy - Eg% G er (k<j) so
Zk(k) = /A, (V@ %.) =2, 2 Sincem,, = gili [2 and
J k k “jk kk “jk* - kk 3 kr
J o~ . .
_ _ k
my = ;;%ngrl we have &, < /m and Rjk </moy SO IZj(k)I Moax®
. i kel = th
proving Eq. (G-2c). Also le(k)l = |mjk - ;g% L erl = [mjk - (k™" row

of L up to i-1, jth row of L up to i-1)]| g_lijI + I(kt row of L up to

i-1, jth row of L up to i-1)| (where (.,-) is a complex dot product)
SMeax * |lkth row of L up to i-1]| - ||jth row of L up to i-1]|

(by Cauchy Schwartz, where || - || = vector norm)

LN ||kth row of L|] - lljth row of L||

m

21

k -~ 2' T3 .
+ .
LNUET ORTAR I b ST

m +,[m. m.. <m +m = 2m
max 1kV Jj — “max max max’

proving Eq. (G-2d). To see that Eq. (G-2c) is sharp and (G-2d) is sharp

to within a factor of 2, consider the matrix
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atb a-b
J for O0<b << a.

a-b atb

Finally, we prove

k k Mnax
leki = |Zj(k) (k)| <5 : (G-2e)

min

. k . 2 -
Since m, = ;Z% 12,.| we have [2 | < ‘)mmax .
. Jm m
Also, |w .| = |o,, L[ f< Y- MaX  since d, > A . . To see that
: kJ Jky k'— \/<T - >‘min k — "min
k

this bound is sharp to within a factor of 2, consider

; 1 1 ]
14 i 3 1 0 > 0 1 a
| : :
\ ‘ ] = for large a;

> 2 a 1 0 1 0 1

~ _ max .
SO P ® E_?_’ Max = 2> af 7 =28
a min

.

Next we consider the version of the algorithm without square roots
when sample vectors arc used to compute the wij's. We denote the inter-
- mediate resuits by Z';(k) to distinguish them from the Z;(k) above, when
- the actual matrix was used. We interpret the inputs Z}(k) as Gaussian

random variables with zero means and covariance matrix M, and compute the

distributions of the Z}(k) which are functions of the Z;(k). The actual

distributions of the Z}(k) are too complicated to compute exactly, but we
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make the approximation of replacing the wij‘s by their means as soon as
they are computed. When the number of samples is large, this is an ex-
cellent approximation. (For other properties of these distributions, see
[Rao 1965]?) It is in fact possible to write down the exact distribution
of the wij‘s, see Rao, p. 508. With this approximation we note that

Z;(k) is a linear combination of the input random variables, and hence

is Gaussian with zero mean. If we compute its variance, then we will know
the distribution of its possible values and hence how many bits are re-
quired to represent it.

We now prove

var[2' 3 (k)] = 2}() (6-3a)

where Z}(j) is computed as though the actual matrix were being passed

, using the results of the last

) 1
through. Thus Ain < var[Z j(k)] <m

max
analysis.

In other words, after the random variables have passed through i

h

rows of the array, their variances equal the it partial sums of the

expressions for dj. Let V be the column vector of random variables, so
that E(W*) = M and E[(L™V)(L™'V)¥] = LTE(WAIL™"™ = . Let L represent

the transformation performed by the first m rows. Then

*C.R. Rao, Linear Statistical Inference and Its Applications, New
York, John Wiley and Sons, 1965.
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Partitioning L as

1
: L 0
' 1
Wim 1
[_ =
w]m+1 ..... Wmm+1 1 A L2
| Y2 ]
_wln Yon Yn+1n
and D as
- d T
.d D.[ 0
m
D =
d
m+1 L0 ’ D,
"

we see we can write

178




o |

It is the diagonal elements of Mm that are our answers. The first m diagonal é

elements are obviously equal to their final values. Now M = LDL*

* *
A L1011 I L,D,A

A I ] * * *
L]0 AL | |eo,L] AD,A™+L,D, L)
Hence
* L D * _ * * *
(*) (LgDalp)yy = (ADJAT + LoDyLo)ss - (ADJA'),

m —
= m'IJ - r; lirljr dr

Set i=j and we get the desired result.

Next we prove that wij is approximately Gaussian with mean

Ew, ) = Z;(i); so |E(w

i )} <m___ and variance

max

iJ




vartig) = L (2G) ) + 12
iy S\ J i
1 i-1 2 i-1 _ 2
=gld; - (mjj - ; ]er] dr') + Imij - % zjr dr|
r= r=1
<2ml. /s (G-3b)
< ¢ Mhax y
™1 M2
If Q, and Q, are normal with covariance matrix ,» it 1s easy to see
! 2 o1 Mg

E(Q]Qz) = my, and var(Q]Qz) =My My, +my, m,,- Since linear combinations

of multivariate Gaussian random variables are multivariate Gaussian, we need
only find out what the variances and covariances are of the variables used to
form wij‘ We approximate wij as Gaussian by the central limit theorem. They

are given by (*) with m=i, and this is our result. The 1/S factor is used

to cancel one of the S factors "concealed" in mrfnax' Since wU. = N(u,oz) with
2 2
|u| S Mpax @nd o7 < 2m . /S we have
P(|w;.| > 2t ) = P(w., < 2t m ) + Plw,, < -2t )
ij! = max ij = max ij — max
t t
PR B F N 2 Mhax ™M Lpf M "2 Mrax ¥ Mnax
2 G2 ‘/7 - A
5 Mmax S Mmax S Mmax S Mmax
Zt m - t +m

- 2'm

2 2
i J;mmax . ‘/'S Mmax
=P | N(0,1) 1@(211)] + p[ N(0,1) < -\é—-(zt-l)}




= p lN(O,I) z{g(zt - l)]

wij is approximately x2 with S degrees of freedom, mean

N P X .
E(wij) = 21(1), lE(wij)l < moay and variance

< 2
var(wij) <2 Wmax/s . (G-3¢)

Since E(ﬁij) = var[Z'}(i)], the proof of the first part is easy.

Recalling that the expectation of the fourth power of a standard normal

variable is 3, we obtain var(ﬁ..)

A P 2
ii 2 var[zZ 1.(1)]/5 <2 mmax/s'

Thus

= t - ol2 S te) o 2 t
P(wij >2 mmax) = P(wij - > 2 S) = P(XS <2 S)
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Appendix H

SAMPLE VOLTAGE YECTOR MODEL

To determine if the sample covariance matrix approach is feasible when
N, the number of weights, is at least 200, we had to use a model of the sample
voltage vectors to write a computer simulation to test the algorithm and its
implementation.

The radar test problem is arranged so that the interferers can be
specified by their eigenvalues. To do this simply, a linear antenna array
with uniform spacing and weighting was chosen. With this configuration it is
easy to form multiple beams and place an interferer in each beam so that each
beam output contains only powerAfrom that interferer. Since each beam output
is then independent, the covariance matrix of the beam output is diagonal and
the interferer powers are the eigenvalues. It is easy to transform the
problem to element space, using a unitary transformation.

To implement this approach, the interferers are placed so that all
except one are at nulls of the beam pattern for each beam. The voltage

output of a beam formed by summing all element outputs is given by

Xy = O+ eV ...+e1(N'])w] - sin NQ/2)

sin /2
where
Y = 2D sin 9,
8 = an angle measured from the boresight of the antenna to a point
source, and
D = the antenna element separation in wavelengths.

If interferer positions are chosen so that sin [N(\pn - wm)/Z] =0 forn #m,

they satisfy the condition for independence. This will be true when
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N/2(wn - wm) = kr, where k is an integer. The desired interferer positions

are, therefore,

_ 27k _ _ )
Y% TN » k= 1,...,N-1 . {H-1)

In element space the voltage at each of N elements is given by

K .
Xn - g} Rk\ﬁ? e]Zﬂk(N-T) +\/Q; . Rn (H-2)

for the K = N-1 interferers. The A, are the powers in each interferer and the
R's are independent zero-mean random variables with [ﬁ;}z = 1. The R are
included, when needed, to simulate the interferer variations between samples,
and receiver noise whose power is Qn'

Since the interferer positions are known, the true covariance matrix

can be computed as

K .
- r ~i[27k/N{m-n)
o = *m Xn = /K g; A € [ I (H-3)

A stochastic sample covariance matrix using S samples can be obtained

by forming

N S
Mm,n =1/S s; JE X (H-4)

where the voltages are obtained from Eq. (H-2).
With this model the eigenvalues Ak can be chosen to span any desired

range of values, and the number of interferers can be varied up to N-1 while

one specifies the eigenvalues.
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RADC plans and executes research, development, test and
selected acquisition programs <in support of Command, Control
Communications and InteLligence (C31) activities. Technical
and engineering support within areas of technical competence
L8 provided to ESD Program Offices (POs) and other ESD
elements. The principal technical mission areas are
communications, electromagnetic guidance and controf, sut-
vecllance of ghround and aerospace obfects, Antelligence data
collection and handling, information system technology,
Lonospheric propagation, solid state sclences, microwave
physics and electronic neliability, maintainability and
compatibility,







